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Sample Fusion Network: An End-to-End Data
Augmentation Network for Skeleton-based Human

Action Recognition
Fanyang Meng, Hong Liu, Member, IEEE, Yonghseng Liang, Juanhui Tu and Mengyuan Liu

Abstract—Data augmentation is a widely used technique for
enhancing the generalization ability of deep neural networks
for skeleton-based human action recognition (HAR) tasks. Most
existing data augmentation methods generate new samples by
means of handcrafted transforms. However, these methods often
cannot be trained and then are discarded during testing because
of the lack of learnable parameters. To solve those problems,
a novel type of data augmentation network called a sample
fusion network (SFN) is proposed. Instead of using handcrafted
transforms, an SFN generates new samples via a long short-
term memory (LSTM) autoencoder (AE) network. Therefore, an
SFN and an HAR network can be cascaded together to form a
combined network that can be trained in an end-to-end manner.
Moreover, an adaptive weighting strategy is employed to improve
the complementarity between a sample and the new sample
generated from it by an SFN, thus allowing the SFN to more
efficiently improve the performance of the HAR network during
testing. Experimental results on various datasets verify that the
proposed method outperforms state-of-the-art data augmentation
methods. More importantly, the proposed SFN architecture is a
general framework that can be integrated with various types of
networks for HAR. For example, when a baseline HAR model
with 3 LSTM layers and 1 fully connected (FC) layer was used,
the classification accuracy was increased from 79.53% to 90.75%
on the NTU RGB+D dataset using a cross-view protocol, thus
outperforming most other methods.

Index Terms—Human Action Recognition, Data augmentation,
Autoencoder, LSTM

I. INTRODUCTION

Human action recognition (HAR) [1]–[7] has been a hot
topic in computer vision for decades because it can be
applied in various fields, e.g., human-computer interaction,
game control and intelligent surveillance. Compared with other
modalities, such as RGB and depth representation, the skeleton
is a high-level representation of human action that is robust
to variations in location and appearance. Moreover, rapid
advances in imaging technology and the development of a
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Fig. 1: The curves of the training error and testing error for the
NTU RGB+D Cross-subject dataset with the baseline LSTM
network, which contains only 3 LSTM layers and 1 FC layer.

powerful human pose estimation technique based on depth
have made skeleton data easily accessible. Therefore, skeleton-
based HAR has attracted substantial research attention [8]–
[15].

Recently, deep learning methods using skeletons have been
undergoing rapid development because they can automatically
extract spatial-temporal relationships among joints [16]–[23].
Applications of these works have achieved outstanding perfor-
mance in skeleton-based HAR. However, since skeleton data
are far less abundant than RGB data, overfitting has become
a very serious problem for deep learning methods, even in
shallow networks (as shown in Fig. 1). This problem limits
the generalization ability of deep learning methods.

To overcome such limitations, many regularization methods
have been proposed [24]–[28]. These methods can be broadly
categorized into three groups, namely, loss function regulariza-
tion, network structure regularization and data augmentation.
In contrast to the two other types of regularization methods,
data augmentation [29]–[35] focuses on the data level and does
not require the design of a new loss function or modification
of the network structure. Because of these merits, data aug-
mentation is widely used during the training of deep neural
networks to improve their generalization ability.

However, existing data augmentation methods generate new
samples by means of handcrafted transforms, the parameters
of which cannot be learned. Therefore, these methods cannot
be trained along with the training of an HAR network.
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Fig. 2: A flowchart of the sample fusion network used as data
augmentation for the HAR network during training and testing.

Meanwhile, since an original sample and the sample generated
from it by means of a handcrafted transform are not effective-
ly complementary, they generally cannot be adapted to the
subsequent recognition networks to help improve the HAR
performance during testing.

In this paper, a novel data augmentation tool called a
sample fusion network (SFN) is proposed for skeleton data
augmentation. The flowchart of our method is presented in
Fig. 2. During training, for a given sample pair randomly
selected from the training dataset, whether they are from
the same class or not, sample fusion is performed through
the SFN to generate a new sample. Then, the new sample
is utilized to train the HAR network. During testing, for a
given sample, that sample and its corresponding output from
the transformation network are separately input into the HAR
network, and the outputs of the HAR network are then fused
as the final classification result.

An autoencoder (AE) network has also been used for data
augmentation in [36], but the AE network presented in [36] is
used only to transform the input into the feature space; the new
samples generated in the feature space are still generated via
traditional data augmentation methods. Consequently, this AE
network cannot be trained in an end-to-end manner along with
an HAR network during training and also cannot be utilized to
improve the performance of the HAR network during testing.
Therefore, that method can still be considered to generate new
samples by means of handcrafted transforms.

Unlike in the case of handcrafted transforms, whose param-
eters are selected randomly, an SFN can be cascaded together
with an HAR network during training for data augmentation.
Due to their cascaded structure, the SFN and HAR network
can be trained together in an end-to-end manner. Moreover,
an adaptive weighting strategy is employed to improve the
complementarity between a sample and the sample generated
from it by the SFN. Thus, the SFN can also be utilized to
improve the performance of the HAR network by means of
decision-level fusion.

The key component of our method is the introduction of
a neural network into the data augmentation process, which

results in two advantages. First, the data augmentation method
can be trained in an end-to-end manner along with an HAR
network. This approach improves the effectiveness of data
augmentation for HAR networks. Second, during testing, the
SFN can be utilized to further improve the performance of the
HAR network.

The three major contributions of this work are as follows:
• First, a unified mathematical formulation for data aug-

mentation methods is proposed. Then, the limitations of
existing data augmentation methods are analyzed.

• To address the problems with the existing data augmenta-
tion methods for skeleton-based HAR networks, an SFN
is proposed. The SFN is cascaded together with an HAR
network to form a combined network that can be trained
in an end-to-end manner and utilized to improve the
performance of the HAR network during testing.

• To further enhance the performance of the SFN, we
propose an adaptive weighting strategy that is applied
to the features of the SFN during training. Then, we
extend the SFN to multiple samples and multiple scales
to improve the diversity of the generated samples.

Furthermore, to better understand the contributions of the
various aspects of our proposed method, we evaluate the
impacts of the different components leveraged in our method.
We find that on the NTU-CV dataset (the largest existing in-
house skeleton dataset obtained under a cross-view protocol),
the accuracy of the baseline model (containing only 3 long
short-term memory (LSTM) layers and 1 fully connected (FC)
layer) is increased from 79.53% without data augmentation to
90.75% with our method, which outperforms all state-of-the-
art data augmentation methods.

The rest of this paper is organized as follows. Section II
presents a review of related work. Section III introduces
the problem formulation, and the optimization procedure is
described in Section IV. The experimental results and the
performance analysis are reported in Section V, followed by
the conclusion in Section VI.

II. RELATED WORKS

Since our work addresses an attempt to increase the gen-
eralization ability of skeleton-based HAR networks by means
of data augmentation, we first review related work on deep
learning methods for skeleton-based HAR. Then, the existing
data augmentation methods for skeleton-based HAR are briefly
introduced.

A. Skeleton-based HAR model

According to the architecture of the neural network, deep
learning methods can be broadly categorized into three groups:
CNN-based methods, RNN-based methods and methods based
on other architectures.

RNN-based methods: Skeleton data are used as time-series
inputs to an RNN to exploit the temporal information. Du et al.
[13] proposed an end-to-end hierarchical RNN for encoding
the temporal relationships between skeleton joints and divided
the skeleton joints into five main groups to extract local fea-
tures. Veeriah et al. [37] proposed a differential gating scheme
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Fig. 3: Different data augmentation strategies. (a) Single-sample-based; (b) Multiple-sample-based; (c) SFN.

for an LSTM neural network to emphasize the salient motions
between successive frames. To learn the common temporal
patterns of different groups of joints independently, Shahroudy
et al. [38] proposed a part-aware LSTM human action learning
model (P-LSTM). Liu et al. [39] introduced a spatial-temporal
LSTM (ST-LSTM) network for jointly learning both the spatial
and temporal relationships among joints. Song et al. [40]
proposed an end-to-end spatial and temporal attention model
that learns to selectively focus on discriminative joints of the
skeleton within each frame of the input and focuses different
levels of attention on the outputs of different frames.

CNN-based methods: Skeleton sequences are converted
into images, thus converting the task of skeleton-based HAR
into an image classification task. Therefore, the key question
is how to effectively represent spatiotemporal information in
the form of image properties, including color and texture.
Du et al. [13] represented a skeleton sequence as a matrix
by concatenating the joint coordinates at each instant and
arranging the vector representations in chronological order.
Wang et al. [22] proposed a method called joint trajectory
maps (JTM), in which the trajectories are mapped into the hue,
saturation, and value (HSV) space, to encode spatiotemporal
information into multiple texture images. Li et al. [41] used
joint distance maps (JDM) to encode the pairwise distances
between the skeleton joints of single or multiple subjects
into image textures. Hou et al. [10] drew skeleton joints
with a specific pen onto three orthogonal canvases and then
encoded the dynamic information in the skeleton sequences
in color. Liu et al. [21] encoded skeletons into a series of
color images and then applied visual/motion enhancement
methods to the color images to enhance their local patterns.
Yan et al. [42] proposed a generic graph-based model called
a spatial-temporal graph convolutional network (ST-GCN) to
automatically learn both spatial and temporal patterns from
data.

Methods based on other architectures: Salakhutdinov et
al. [43] adopted a deep Boltzmann machine (DBM) to learn
low-level generic features and high-level correlations among
low-level features of the skeleton. Wu and Shao [44] adopted
deep belief networks (DBNs) to extract high-level features
to represent humans in each frame in 3D space. Ijjina and
Krishna Mohan [45] adopted a stacked AE network to learn the
underlying skeleton features. Huang et al. [15] incorporated

the Lie group structure into a deep learning architecture to
learn more appropriate Lie group features of skeletons.

Generally, deep learning methods can automatically extract
spatial-temporal relationships among joints; such method-
s have achieved outstanding performance in skeleton-based
HAR. However, since skeleton data are far less abundant than
RGB data, overfitting problem has become a very serious
problem for deep learning methods, even in shallow networks.
Thus, a more effective regularization method is required to
enhance the generalization ability of deep learning methods.

B. Data Augmentation

Data augmentation aims to enlarge a training dataset by
applying various transformations to the existing data. Although
many data augmentation methods exist, here we focus only on
data augmentation methods that can be used for skeleton data.

According to the number of samples used during data aug-
mentation, existing data augmentation methods for skeleton
data can be categorized into two main types: single-sample-
based and sample-pair-based methods.

Single-sample-based methods: A single original sample is
used to generate new samples. Wang et al. [32] proposed ro-
tation, scaling and shear transformations as data augmentation
techniques based on 3D transformations to make better use of
a limited supply of training data. Ke et al. [33] employed
cropping to increase the number of samples. Yang et al.
[34] exploited horizontal flipping as a method of augmenting
data without loss of information. Li et al. [35] designed
various data augmentation strategies, such as random rotation
in 3D coordinates, the addition of Gaussian noise and video
cropping, to augment the scale of an original dataset.

Sample-pair-based methods: A sample pair is used to
generate new samples. For instance, Zhang et al. [46] proposed
a straightforward data augmentation principle called Mixup, in
which trains a neural network is trained on linear combinations
of pairs of samples and their labels. To impose constraints
on the shape of the feature distributions, Tokozume et al.
[47] generated between-class images by mixing two images
belonging to different classes at a random ratio. Inoue et
al. [48] designed a simple, yet surprisingly effective, data
augmentation technique called SamplePairing, in which new
sample is synthesized from one image by overlaying another
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TABLE I: Principal notations

(xi, yi) a sample and its label from the training or testing dataset
x̃ij a new sample generated from xi and xj
ỹij the label of x̃ij , generated from yi and yj
f(·) a transformation function without learnable parameters
fθ(·) a transformation function with learnable parameters θ
x̂ a new sample generated via a transformation function
D(·) HAR network function
ŷx the output of the HAR network with input x

image randomly chosen from the training data. However,
SamplePairing is not suitable for skeleton data, and the new
samples are still generated by means of handcrafted trans-
forms. To improve the reusability and generalization ability
of data augmentation methods, DeVries et al. [36] proposed
a domain-agnostic approach to data augmentation in feature
space, in which interpolation and extrapolation are performed
in a feature space learned by an AE network. Compared to
single-sample-based methods, methods based on sample pairs
not only generate more new samples but also enhance the
linear relationship between training samples.

Generally, mostly existing data augmentation methods for
skeleton data have evolved from methods for image data
augmentation. Therefore, these data augmentation methods
can effectively enhance the spatial information contained in
skeleton data. However, the temporal information contained in
skeleton data, which is also very important for skeleton-based
HAR, is not effectively considered. Furthermore, since the new
samples are generated by means of handcrafted transforms in
most of the existing data augmentation methods, these methods
cannot be trained in an end-to-end manner and cannot be
utilized to further improve the performance of HAR networks
during testing.

III. PROBLEM FORMULATION

For ease of presentation, the main notations are first sum-
marized in Table. I. Then, a unified mathematical formulation
for data augmentation methods is proposed, and the limitations
of existing data augmentation methods are analyzed. Finally, a
new data augmentation framework called an SFN is proposed,
along with the details of its design.

A. Problem Formulation

For a given sample pair ((xi, yi), (xj , yj)), a new sample
(x̃ij , ỹij) generated via existing data augmentation methods
can be formulated as follows:

x̃ij = λ · f(xi) + (1− λ) · xj
ỹij = λ · yi + (1− λ) · yj

(1)

where λ is a fusion weight and λ ∈ [0, 1].
During testing, for a given test sample x, the classification

result is obtained as follows:

ŷx = D(x)

According to the definitions of the fusion weight and the
transformation function that appear in Eq. (1), we can deduce

that the two types of existing data augmentation methods are
as follows:
• λ = 1 and x̃ = f(x): A new sample is generated by

transformation function f . In this case, Eq. (1) is reduces
to a single-sample-based data augmentation method. (as
shown in Fig. 3(a)). f is artificially defined in most of
the existing data augmentation methods.

• λ ∼ P and x ≡ f(x): A new sample is generated through
the linear fusion of the two original samples xi and xj .
In this case, Eq. (1) corresponds to a sample-pair-based
data augmentation method (as shown in Fig. 3(b)).

The existing data augmentation methods, whether based on
single samples (with no parameters to be learned) or sample
pairs (with no transformation function to be learned),
cannot be trained along with the training of an HAR network.
Moreover, these methods cannot be utilized to improve the
performance of the HAR network during testing.

To overcome these limitations, a new data augmentation
tool called an SFN is proposed (as shown in Fig. 3(c)). The
corresponding formulation is defined as follows:

x̃ij = λ · fθ(xi) + (1− λ) · xj
ỹij = λ · yi + (1− λ) · yj

(2)

where fθ is a transformation function with learnable parame-
ters θ, which can be defined by a neural network. Thus, we
can easily cascade the SFN with an HAR network to form a
combined network that can be trained in an end-to-end manner.

Then, during testing, the classification result for x is ob-
tained as follows:

ŷx = β ·D(fθ(x)) + (1− β) ·D(x) (3)

where β is a weight coefficient and β ∈ [0, 1].
From Eq. (3), it can be observed that when β = 0, only

the original sample is utilized during testing, and the SFN
reduces to a traditional data augmentation method. When β =
1, only the sample generated via the transformation function is
utilized during testing, and the SFN reduces to a preprocessing
method. However, when β ∈ (0, 1), the original sample and
the corresponding output of the transformation function are
fused at the decision level.

Eq. (2) and (3) show that compared with the existing
data augmentation methods, an SFN has two advantages.
First, since the transformation network is defined by a neural
network, the cascaded SFN and HAR network can be easily
trained in an end-to-end manner during training. Second, since
a sample and its corresponding output of the transformation
network usually vary at the pixel level but are equivalent in
terms of classification, decision-level fusion can be applied to
improve the performance of the HAR network during testing.

The above analysis shows that the SFN has three key
components: the designation of the transformation network
and the definitions of the fusion weight and the loss func-
tion. Therefore, we proceed to present the transformation
network in Section III-B, the definition of the fusion weight
in Section III-C, and the definition of the loss function in
Section III-D. The optimization procedure for multiple-sample
fusion is described in Section IV.
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Fig. 4: Diagram of the transformation network.

B. Transformation Network

To improve the performance of the HAR network during
testing, the output of the transformation network should be
different from the corresponding input in terms of its pixel-
level representation and the same as the corresponding input in
terms of classification. The AE architecture is one of the most
common network structures. Because of its data compression
ability, the output of an AE network is usually different from
the input at the pixel level but contains most of the same useful
information as the input; thus, an AE network is suitable for
use as a transformation network. Meanwhile, related research
[37]–[40] shows that an LSTM network, which can extract
meaningful features from skeleton data with only a few layers,
can serve as a powerful model for skeleton data.

Based on the above analysis, we build a transformation
network with an AE network structure containing four stacked
LSTM layers (as shown in Fig. 4). The first two LSTM layers
serve as the encoder, and the last two layers serve as the
decoder.

The loss function of the AE network in the SFN is the
classification accuracy of the HAR network, rather than the
mean square error (MSE) between a sample and its corre-
sponding output from the AE network. Therefore, there is
a large difference between a sample and its corresponding
sample generated by the AE network in the SFN in terms
of their pixelwise representations (as shown in Fig. 4 (c)).
Moreover, the process of the AE network in the SFN is also
different for different action sequences (as shown in Fig. 5).
As a result, the samples generated by the AE network in the
SFN are more diverse than those generated via most existing
data augmentation methods. It is worth noting that although
the AE network has only one output, the parameters of the
transformation network are updated during training. Therefore,
for a given sample, the output of the AE network will be
different in each iteration.

C. Fusion Weight

Eq. (2) shows that the fusion weight is an important
parameter that directly affects the fusion results. Therefore,

(a) (b)

Fig. 5: Visualizations of several action sequences in the NTU
RGB+D dataset: (a) the original samples and (b) the

reconstructed samples output from the AE network in the
SFN (γ=10 in Eq. (9)).

the design of the parameter setting strategy is a key problem
for an SFN.

First, to enable the SFN to be used for more flexible testing,
the trained HAR network needs to be able to separately
classify an original sample (β = 0 in Eq. (3)) and its
corresponding output from the transformation network (β = 1
in Eq. (3)) separately. Therefore, the fusion weight cannot have
a fixed value during training.

Second, at the beginning of training, to improve the con-
vergence of the SFN and the HAR network, more fused
samples, which are generated by fusing each sample and its
corresponding output from the transformation network, are
needed to train the HAR network. However, at the end of
training, to ensure the classification performance of the HAR
network for the original and generated samples, more original
samples and samples generated by the transformation network
are needed to train the SFN and HAR network separately.

Based on the above analysis and related studies [46], the
fusion weight is defined as follows:

λ ∈ Beta(α, α)

α =max(1− n/N, 0.1)
(4)

where α is the parameter of the beta distribution, n is the
number of the current epoch and N is the total number of
epochs.

Eq. (4) shows that at the beginning of training, the fusion
weight approximately follows a uniform distribution (α =1.0
as shown by the red line in Fig. 6), which means that more
original samples and samples generated by the transformation
network are fused. At the end of training, the fusion weight
should approximately follows the Bernoulli distribution (α
=0.1 as shown by the green dotted in Fig. 6). In this case, more
original samples and samples generated by the transformation
network are utilized to train the HAR network separately. In
this way, the HAR network can classify each sample and the
corresponding sample generated by the SFN separately.
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D. Loss Function

For an SFN cascaded with an HAR network, the loss
function is defined as follows:

L = λ · L(yi, ŷ) + (1− λ) · L(yj , ŷ) (5)

where
ŷ = D(x̃ij)

L(yi, ŷ) = −
C∑
c=1

yi(c) · log(ŷ(c))

L(yj , ŷ) = −
C∑
c=1

yj(c) · log(ŷ(c))

Eq. (5) shows that the loss function includes two terms.
The first term, L(yj , ŷ), can be regarded as the classification
error of the HAR network for the original sample. This term
ensures that the HAR network can classify the original samples
and that the SFN can be used during testing. The second term,
L(yi, ŷ), can be regarded as the classification error of the HAR
network for the samples generated by the SFN. This term not
only ensures that the HAR network can classify the samples
generated by the SFN but also ensures that each generated
sample is the same as the corresponding original sample in
terms of their classification by the HAR network.

IV. OPTIMIZATION

In this section, to further enhance the diversity of generated
samples by SFN, we extend the number of fused samples from
a pair to multiple samples. Then, a multiscale transformation
network (MSTN) is proposed to enhance the capability of the
transformation network. Finally, the loss function is optimized
to adapt to these improvements.

A. Multiple Samples Fusion

To further enhance the sample diversity, the number of
samples used in fusion is extended from a pair to multiple
samples. The multisample fusion process is formulated as
follows:

x̃i1,..,m,j1,..,n = λ · fθ(x̃i1,..,m) + (1− λ) · x̃j1,..,n
ỹi1,..,m,j1,..,n = λ · ỹi1,..,m + (1− λ) · ỹj1,..,n

(6)

where the new sample (x̃i1,..,m,j1,..,n , ỹi1,..,m,j1,..,n)
is generated from the given sample pair

(a) Drink water (Training set)

(b) Drink water (Test set) (c) Noisy data

Fig. 7: Skeleton snapshots from the NTU RGB+D dataset [38].

((x̃i1,..,m , ỹi1,..,m), (x̃j1,..,n , ỹj1,..,n)), and the sample x̃i1,..,m
and its corresponding label ỹi1,..,m are generated as follows,
and similar expressions hold for x̃j1,..,n and ỹj1,..,n :

x̃i1,..,m =
1∑m

k=1 λk
·
m∑
k=1

λk · xik

ỹi1,..,m =
1∑m

k=1 λk
·
m∑
k=1

λk · yik

Eq. (6) shows that regardless of how many samples are used in
fusion, the transformation network is used only once to reduce
the computational complexity.

As the number of samples used increases, the diversity of
the generated samples increases. However, the assumption that
linear interpolations of feature vectors should lead to linear
interpolations of the associated targets does not always hold,
such as when ”standing up” and ”sitting down” are fused.
Therefore, determining the number of samples to be used in
fusion requires balancing the tradeoff between the diversity of
the generated samples and the accuracy of the corresponding
labels.

B. Multiscale Transformation Network

To further enhance the ability of the transformation network
to remove useless information and enhance useful information,
a multiscale transformation network (MSTN) is designed.

During training, each newly generated sample x̃i1..m can be
rewritten as follows:

x̃i1..m =
1

S∑
s=1

ws

·
S∑
s=1

ws · fsθ (xi1..m) (7)

where fsθ is a transformation network with scale s. To improve
the generalization ability of the MSTN, ws is defined in the
same way as the fusion weight in Eq. (4).

During testing, to improve the performance of the HAR
network, the transformation network at each scale outputs a
generated sample that is then input into the HAR network to
obtain a prediction result. Finally, all the prediction results are
fused as follows:

ŷ =
β√
S
·
S∑
s=1

D(fsθ (x)) + (1− β) ·D(x) (8)
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Fig. 8: Skeleton snapshots from the UTD-MHAD dataset [49].

As the number of scales increases, it becomes more difficult
for the MSTN to converge, especially when the follow-
ing HAR network is deep. Additionally, the computational
complexity during testing increases. Therefore, selecting the
number of scales requires balancing the tradeoff between time
complexity and accuracy.

C. Loss Function Optimization

First, as the number of samples used in fusion increases,
the generated samples become more diverse, but their cor-
responding labels become more inaccurate. Second, as the
number of scales increases, more parameters must be learned
in the MSTN. Therefore, it is more difficult for the MSTN
to converge. Third, at the beginning of training, the HAR
network is far from convergence, so a loss function based
on the classification error cannot effectively guide it toward
convergence.

Based on the above considerations, to reduce the effects of
the number of fused samples and the number of scales used
in the SFN, the loss function can be rewritten as follows:

L = λ · (L(yi, ŷ) + γ̀ ‖x̂− x‖2) + (1− λ) · L(yj , ŷ)

γ̀ = γ ·max(1− n/N, 0.1)
(9)

where n and N are the number of the current epoch and the
total number of epochs.

Eq. (9) shows that the reconstruction error is introduced
as a regularization term. At the beginning of training, since
the HAR network is far from convergence, the classification
error is inaccurate. In this case, a greater reconstruction
error with respect to the original sample is considered to
improve the convergence of the HAR network. At the end of
training, since the HAR network is near convergence, more
classification error is considered. This process ensures that
each sample and its corresponding output from the MSTN will
be complementary to each other; then, the SFN can be used
during testing to improve the accuracy of the HAR network.

V. EXPERIMENTS AND ANALYSIS

A. Datasets and Settings

Datasets. We evaluate the performance of our method on
three benchmark skeleton datasets: NTU RGB+D [38], UTD-
MHAD [49] and Northwestern-UCLA []. We first report a

Fig. 9: Skeleton snapshots from the Northwestern-UCLA
dataset [50].

detailed ablation study conducted on the NTU RGB+D dataset
to examine the contributions of the various components of the
proposed model to its performance. Then, we compare our
method with other state-of-the-art methods on all datasets.

1) NTU RGB+D dataset [38] (hereafter, called NTU). The
NTU dataset contains 60 actions performed by 40 sub-
jects from various viewpoints, resulting in 56,880 skele-
ton sequences. This dataset also contains noisy skeleton
joints, which are especially challenging for recognition.
Following the cross-view protocol (NTU-CV), we used
all samples from camera 1 for testing and the samples
from cameras 2 and 3 for training. The training and
testing sets contained 37,920 and 18,960 samples, respec-
tively. Following the cross-subject protocol (NTU-CS),
we split the 40 subjects into training and testing groups.
Each group contained samples of actions performed by
20 of the subjects, captured from all three different views.
For this evaluation, the training and testing sets contained
40,320 and 16,560 samples, respectively.

2) UTD-MHAD dataset [49] (hereafter, called UTD): The
UTD dataset was collected using a Microsoft Kinect
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Fig. 10: Structures of CNN-based AE network and CNN
model. (a) the CNN model, (b) the CNN-based AE network.
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TABLE II: The performance of the SFN variants for the baseline model with different fusion weight strategies

NTU-CV NTU-CS
P

Mixup SFN0 SFN1 SFN0.5 Mixup SFN0 SFN1 SFN0.5

0 79.53 80.28 81.23 82.23 70.02 70.50 71.15 72.15
1 84.84 83.36 82.76 85.64 76.24 75.48 74.3 77.97
2 85.8 86.27 87.16 88.79 77.70 77.86 78.71 80.50
3 85.74 86.50 87.25 88.98 77.67 77.92 78.48 80.37

sensor and a wearable inertial sensor in an indoor en-
vironment. The dataset contains 27 actions performed by
8 subjects. Each subject repeated each action 4 times,
resulting in a total of 861 sequences. We used this dataset
to compare the performances of methods using different
data modalities. The cross-subject protocol was used for
evaluation.

3) Northwestern-UCLA dataset [50] (hereafter, called NU-
CLA). The NUCLA dataset contains 1,494 sequences
covering 10 action categories: picking up with one hand,
picking up with two hands, dropping trash, walking
around, sitting down, standing up, donning, doffing,
throwing and carrying. Each action was performed one
to six times by ten subjects. This dataset contains data
captured from a variety of viewpoints. Following [50],
we used the samples from the first two cameras as the
training data and the samples from the third camera as
the testing data.

Training. For training, the batch sizes for the NTU, UTD
and NUCLA datasets were set to 256, 8 and 8, respectively,
and the total number of iterations for the NTU, UTD and
NUCLA datasets are set to 1000, 4000 and 2000. For optimiza-
tion, we used Adam with the default settings in PyTorch. The
learning rate was set to 10−3 for the first 80% iterations and
10−4 for the remaining 20% iterations. The implementation
was based on PyTorch and was run on a system with a 8
GTX1080Ti card and 256 GB of RAM. To reduce the effects
of random parameter initialization and random sampling, we
repeated the training on the UTD and NUCLA datasets five
times and report the average results.

B. Methods

Regularization methods.To fully and exactly evaluate the
proposed method, we compare the method with 5 state-of-
the-art regularization methods for the RNN model, including 1
L2 regularization method, 2 network agriculture regularization
methods and 2 data augmentation methods. The compared
methods are as follows:
• L2 regularization. A regulation method for network

parameters based on L2 weight decay. The weight decay
in the L2 penalty was set to 10−3 in the experiments.

• Dropout [24] 2.A regularization method for networks in
which units (along with their connections) are randomly
dropped from the neural network during training. The
dropout probability was set to 0.5 in all experiments.

• Zoneout [25]. A method for regularizing RNN networks
by randomly preserving hidden activations.

• Rotation [35]. A data augmentation method for skeleton
data based on random rotation in 3D coordinates.

• Mixup [46]. A data augmentation method based on
fusing pairs of samples and their labels.

Compared methods. To fully and exactly evaluate our
proposed method, we compare our method with 20 state-of-
the-art methods

• 10 LSTM-based methods. Such as Deep RNN [38],
ST-LSTM + Trust Gates [51], Geometric Features +
RNN [52] ,GCA-LSTM [23], STA-LSTM [40], Pose-
conditioned STA-LSTM [53], VA-LSTM [54], EnTS-
LSTM [55], Zoneout [25] and IndRNN [26],

• 8 CNN-based methods. Such as C3DJ [56], JTM [22],
JDM [41], Res-TCN [57], Clips-CNN + MTLN [33],
Optical Spectra + CNN [10], EVCNN [21]) and ST-GCN
[42],

• 2 methods based on other types of networks. 3DHOT-
MBC [7], LieNet-3Blocks [58].

HAR models. To evaluate our proposed method, the SFN
was cascaded together with three LSTM-based HAR networks
separately for training and testing, including the baseline
model, a CNN model, a Bi-LSTM model and a two-stream
(TS) model, as described below:

• Baseline. We built the baseline model by stacking 3
LSTM layers followed by 1 FC layer; this design is
similar to many typical HAR network designs [16], [40].
The numbers of neurons in each of the three LSTM layers
was set to 100. The number of neurons in the FC layer
was set equal to the number of action classes, and the
exponential linear unit (ELU) function was used as the
activation function.

TABLE III: Performance of SFN for baseline model with
different fusion weight strategies

NTU-CV NTU-CS
Strategy

SFN0 SFN1 SFN0.5 SFN0 SFN1 SFN0.5

β = 0 79.53 – – 70.02 – –
β = 1 – 81.90 – – 74.76 –
β = 0.5 – – 84.33 – – 77.72

β ∈ U(0, 1) 85.71 82.62 87.11 78.46 75.01 79.86
β ∈ B(2, 0.5) 85.61 86.64 87.39 76.55 77.91 78.77

β ∈ Beta(0.2, 0.2) 86.27 87.16 88.79 77.86 78.71 80.50
β ∈ Eq (4) 87.79 88.23 90.19 80.59 80.35 82.90
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• CNN. We built the CNN model by stacking 4 CNN
layers followed by 2 FC layers (as shown in Fig. 10
(a)). To adapt to the CNN network structure, the skeleton
sequences were converted into images using the method
in [13].

• Bi-LSTM. To construct this model, the LSTM layers
in the baseline model were replaced with bidirectional
LSTM layers, and the number of neurons in each of the
three bidirectional LSTM layers was set to 200.

• TS. The design of this model is similar to that of a two-
stream convolutional network, except that two baseline
models are used in place of the CNN models. The inputs
to one baseline model are the original skeleton data, and
the inputs to the other baseline model are the frame
differences of the skeleton data.

AE network structures. To evaluate our proposed method
under different network structures, in addition to the LSTM-
based AE network structure, we also built a transformation
network with a CNN-based AE network structure (as shown
in Fig. 10 (b)).

Ablation Studies. To better understand the contributions of
the different components of our method, we also implemented
3 SFN variants to perform extensive ablation studies (similar
to a multiscale SFN (MSSFN)):
• SFN0. In this case, β is set to 0 in Eq. (8), which means

that only the original samples are used during testing,
with no contribution from the transformation network.
Thus, the SFN becomes a traditional data augmentation
method.

• SFN1. In this case, β is set to 1 in Eq. (8), which means
that only the samples generated by the SFN are used
during testing. Thus, the SFN becomes a preprocessing
method.

• SFN0.5. In this case, β is set to 0.5 in Eq. (8), which
means that both the original samples and the correspond-
ing outputs from the transformation network are used and
fused at the decision level during testing.

C. Ablation Study
We examine the effectiveness of the proposed components

in the SFN in this section via action recognition experiments
on the NTU RGB+D dataset. For simplicity, we discuss only
cases involving the baseline model in this section. If not
otherwise specified, the compression ratio r and weight γ are
set to 0.5 and 0.1 respectively.

TABLE IV: The accuracy of the SFN variants for the baseline
model under different compression ratios r

NTU-CV NTU-CS
r

SFN0 SFN1 SFN0.5 SFN0 SFN1 SFN0.5

0.1 87.66 87.04 89.28 80.37 78.89 81.73
0.3 87.66 88.06 89.88 80.01 80.48 82.77
0.5 87.79 88.23 90.19 80.59 80.35 82.90
0.7 87.13 87.51 89.45 79.35 79.61 82.2
0.9 87.00 86.64 89.15 79.21 79.83 82.23

TABLE V: Accuracy of MSSFN under different scale combi-
nations

NTU-CS
Scales

0.3 0.5 0.7 fusion
Single Scale 82.77 82.90 82.2 –

0.3, 0.5 82.58 82.42 – 83.09
0.3, 0.7 82.36 – 82.53 83.29
0.5, 0.7 – 82.85 82.68 83.52

0.3, 0.5, 0.7 82.56 82.82 82.91 83.31

1) MultiSample Fusion: In this section, we evaluate the
effect of the number of samples used in fusion. For simplicity
and fairness, m and n are set to the same values in Eq. (6)
(P = m = n), and P = 0 means that the two samples in the
pair are the same, namely x = xi = xj . Second, the fusion
weight is set to λ ∈ Beta(0.2, 0.2) in accordance with the
Mixup method [46]. The results are summarized in Table. II.

Table. II shows that SFN1 is usually better than SFN0

in terms of accuracy (except for P = 1) because the AE
network in the SFN can remove useless information and
increase the amount of useful information (as shown in Fig. 5).
For either an original sample (SFN0) or the corresponding
output from the SFN (SFN1), the HAR network can classify
it effectively. Therefore, we can flexibly use the transformation
network during testing. SFN0.5 is better than the other methods
in all cases, demonstrating that an original sample and the
corresponding output of the SFN are strongly complementary
to each other.

As the number of fused samples increases, the performances
of the mixup and SFN methods substantially increase for
P = 3. For example, on the NTU-CS dataset, the accuracy
of SFN increases by 2.53% when P increases from 1 to 2
but decreases slightly by 0.13% when P increases from 2
to 3. This difference can probably be explained by the fact
that the greater the number of samples used in fusion is, the
more diverse the fusion samples that are generated but the
more inaccurate the corresponding labels. When P < 3, the
improvement gained from the increased sample is greater than
the degradation due to the inaccuracy of the corresponding
labels. However, when P = 3, the corresponding label become
sufficiently inaccurate to overcome the improvement resulting
from the higher diversity of the generated samples.

TABLE VI: Accuracy of the SFN under different γ on the
NTU dataset

NTU-CV NTU-CS
γ

SFN0 SFN1 SFN0.5 SFN0 SFN1 SFN0.5

0.01 87.55 87.11 89.4 79.82 79.83 82.33
0.1 87.79 88.23 90.19 80.59 80.35 82.90
1 87.64 87.9 89.86 80.12 80.34 82.72

10 87.76 88.36 89.76 79.46 80.4 82.08
100 87.37 88.1 88.5 79.1 80.85 80.91
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TABLE VII: Accuracy of the SFN under different AE networks and HAR networks on the NTU dataset

Network NTU-CV NTU-CS
HAR AE None Mixup SFN0 SFN1 SFN0.5 None Mixup SFN0 SFN1 SFN0.5

CNN
CNN

80.60 82.35
82.81 83.13 83.45

69.33 65.77
70.09 70.18 71.89

LSTM 78.23 80.59 85.93 65.29 66.96 74.84

LSTM
CNN

79.53 85.8
88.05 88.14 88.73

70.02 77.70
76.53 76.76 79.20

LSTM 87.79 88.23 90.19 80.59 80.35 82.90

Based on these observations, to achieve an appropriate
tradeoff between complexity and performance, P was set to 2
for all the sample fusion methods in the following experiments.

2) Fusion Weight: In this work, we evaluate the perfor-
mance of the SFN variants with different weight setting
strategies. The results are summarized in Table. III.

Table. III shows that the random strategies are better than
the fixed strategies, probably because the random strategies
can generate more diverse fusion samples and thus improve
the generalization ability of the HAR network. The fusion
weight strategy based on a beta distribution is better than
those based on other random distributions because when a
sample is fused with more information about the other sample
(β ∈ U(0, 1)), more diverse fusion samples are generated
but the corresponding labels are more inaccurate, and vice
versa (β ∈ B(2, 0.5)). The beta-distribution-based strategy
can achieve an efficient tradeoff between sample diversity and
label accuracy. However, our strategy, as defined in Eq. (4),
is better than the other strategies. For example, for NTU-
CS, the accuracy of SFN0.5 increases from 80.50% with the
beta-distribution-based strategy to 82.90% with our strategy.
Therefore, Eq. (4) is found to be the most suitable strategy for
our method, confirming that the previous analysis is correct.

Based on these observations, we used Eq. (4) as the fusion
weight strategy for the SFN in the following experiments.

3) Compression Ratio of AE: In this section, we evaluate
the performance of the SFN variants under different AE net-
work compression ratios. The results are shown in Table. IV.

Table. IV shows that as the compression ratio r increases,
the accuracy of the SFN initially increases and then decreases.

TABLE VIII: Performance of regularization methods under
different skeleton datasets

Method NTU-CV NTU-CS NUCLA UTD
None 79.53 70.02 61.13 63.16

L2 78.79 69.57 56.91 63.5
Dropout 79.6 70.81 62.17 68.23
Zoneout 85.78 78.24 61.02 67.67
Rotation 82.36 72.23 75.65 78.6
Mixup 85.8 77.7 72.04 82.51
SFN0 87.79 80.59 78.21 84.95

MSSFN0 88.21 80.31 81.30 87.44
SFN0.5 90.19 82.90 79.57 87.75

MSSFN0.5 90.75 83.52 82.61 88.67

For example, the SFN achieves the best accuracy at r = 0.5
for the NTU-CV dataset in most cases. These results are likely
explained by the fact that as the compression ratio decreases,
the AE network can remove more useless information from the
samples, but some discriminative information is also inevitably
lost. As a result, the AE network will be underfit in this
case. By contrast, as the compression ratio increases, the AE
network can retain more discriminative information about the
samples, but more useless information is also retained. As a
result, the AE network will be overfit in this case.

To analyze the effect of multiple scales, we evaluate the
effect of MSSFNs with different scale combinations. The
results are summarized in Table. V. As the number of scales
increases, the MSSFN becomes better than SFN. For example,
on the NTU-CS dataset, the performance increases from
82.77% for a single-scale SFN to 83.52% for the MSSFN with
r = {0.5, 0.7}. The 3-scale MSSFN performs slightly worse
than the 2-scale MSSFNs do. This performance difference can
be explained by the fact that, on the one hand, as the number
of scales increases, the convergence of the MSSFN worsens,
but on the other hand, the representation ability of the baseline
model is more limited. We believe that the performance can
be further improved by increasing the number of epochs or
the representation ability of the HAR network.

Based on these observations, r was set to 0.5 for SFN and
to 0.5 and 0.7 for the MSSFN in the following experiments.

4) Reconstruction Error Constraints: To analyze the effect
of the reconstruction error constraints, we evaluate the perfor-
mance of the SFN variants with different weights. The results
are shown in Table. VI.

Table. VI shows that in most cases, the SFN achieves
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Fig. 12: Accuracy for each action in the NTU-CV dataset with the
baseline HAR model.

the best performance with γ = 0.1 probably because a
small improves the convergence of the SFN by means of
the reconstruction error constraints, especially when the labels
generated through sample fusion are inaccurate. However, as
γ increases, the output of the transformation network in the
SFN becomes more similar to the input sample at the pixel
level rather than at the classification level. In this case, the
output not only cannot guide the HAR network to learn more
useful information during training, but also cannot ensure
complementarity during testing.

Based on these observations, γ was set to 0.1 in the
following experiments.

5) Different Numbers of Training Samples: To evaluate the
performance of the SFN variants when different numbers of
training samples are used, the percentage of training samples
used was varied from 20% to 100% in increments of 20%.
The results are shown in Fig. 11.

Fig. 11 shows that the SFN effectively improves the per-
formance of the baseline model when different numbers of
training samples are used, especially when the number of
training samples used is small. For example, when only 20%
of the training samples were used, the baseline model achieved
an accuracy of only 60.44%, whereas the baseline+SFN0.5 can
achieve an accuracy of 77.59%, an increase of 17.15%. As the
number of training samples used increases, the performance
improvement achieved through data augmentation gradually
decreases. For example, the baseline+SFN0.5 model achieved
an accuracy of only 90.75%, an increase of only 11.22%, when
all training samples were used. This finding can be explained
by the fact that as the number of training samples used
increases, the generalization ability of the baseline model also
increases, which decreases the improvement space available
through data augmentation.

6) Comparisons with Different Network Structures: To an-
alyze the effect of the network structures, we evaluate the

TABLE IX: Results of all skeleton-based methods on the NTU
RGB+D dataset

Method NTU-CS NTU-CV
Lie Group [58] 61.37 66.95
Deep RNN [38] 59.29 64.09

ST-LSTM + Trust Gates [51] 69.20 77.70
Geometric Feature + RNN [52] 70.26 82.39

GCA-LSTM [23] 74.40 82.80
STA-LSTM [40] 73.4 81.2

PC-STA-LSTM [53] 77.10 84.50
VA-LSTM [54] 79.40 87.60
Zoneout [25] 78.24 85.78

EnTS-LSTM [55] 74.60 81.25
IndRNN (6 layers) [26] 81.80 87.97

JTM + CNN [22] 73.40 75.20
JDM + CNN [41] 76.20 82.30

Res-TCN [57] 74.30 83.10
SkeletonNet [59] 75.94 81.16

Clips-CNN + MTLN [33] 79.57 84.83
EVCNN [21] 80.03 87.21
ST-GCN [42] 81.5 88.3

Baseline 70.02 79.53
Baseline+SFN0|0.5 80.59|82.90 87.79|90.19

Baseline+MSSFN0|0.5 80.31|83.52 88.23|90.75
TS 79.72 88.51

TS+SFN0|0.5 83.53|84.81 90.59|91.54
TS+MSSFN0|0.5 83.38|85.26 90.08|92.25

performance of the SFN variants with different combinations
of CNN and LSTM network structures in the AE and HAR
network models. The results are shown in Table. VII.

Table. VII shows that the LSTM structure is a more pow-
erful network structure than the CNN structure for analyzing
skeleton data. For example, on the NTU-CS dataset, the purely
CNN-based network structure achieved an accuracy of only
71.89%, whereas the purely LSTM-based network structure
achieved an accuracy of 82.9%, an increase of 11.01%. This
finding can probably be explained by the fact that the key
property of the convolution operator is the ability to lever-
age the spatially local correlations found in natural images,
whereas there usually are no spatially local correlations in
images converted from skeleton data. For the CNN-based
HAR network, SFN1 is superior to SFN0 in term of accuracy,
indicating that the AE network can learn a better transforma-
tion for converting a skeleton sequence into an image that is
more suitable for the CNN structure. Note, however, that no
matter how poorly SFN0 and SFN1, SFN0.5 is still better than
all other methods. This finding demonstrates that SFN0 and
SFN1 are strongly complementary to each other. The CNN-
based network structure is obviously worse than the LSTM-
based network structure in terms of accuracy on the NTU-CS
dataset. This finding can probably be explained by the fact that



12

79.53

80.91

88.51

85.8

87.3

90.05

87.79
88.77

90.59

88.21
89.39

90.0890.19 90.4
91.54

90.75
91.33

92.25

78

80

82

84

86

88

90

92

Baseline Bi-LSTM TS

None Mixup SFN₀ MS-SFN₀ SFN₀₅ MS-SFN₀₅

(a) NTU-CV

70.02

72.03

79.72

77.7
78.55

80.5680.41
81.69

83.53

80.31
81.05

83.3882.9 83.17

84.81
83.52 83.84

85.26

69

71

73

75

77

79

81

83

85

Baseline Bi-LSTM TS

None Mixup SFN₀ MS-SFN₀ SFN₀₅ MS-SFN₀₅

(b) NTU-CS

Fig. 13: Performance of the SFN under different HAR
networks.

the temporal information is more important than the spatial
information when the cross-subject protocol is applied.

Based on these observations, LSTM-based network struc-
tures were used in the following experiments.

D. Comparisons with State-of-the-Arts Regularization Meth-
ods

In this section, we compare our algorithm with other regu-
larization methods in terms of performance. For simplicity, we
discuss only cases involving the baseline model. The results
are shown in Table. VIII.

Table. VIII shows that compared to the other regularization
methods, data augmentation more effectively improves the
performance of the baseline model on different datasets. For
example, on the NUCLA dataset, the accuracy of the baseline
model is improved by at least 10% via data augmentation,
whereas the accuracy is only slightly improved or even degrad-
ed with the other regulation methods. The performance of data
augmentation based on single-sample transformation depends
on the dataset. For example, the rotation method performs
better than mixup on the NUCLA dataset but worse than
mixup on the other datasets. The performance of sample fusion
is clearly better than that of single-sample transformation be-
cause sample fusion generates samples with greater diversity.
Our method outperforms the other regularization methods on
different datasets.

Fig. 12 shows the accuracy for each action in the NTU-
CV dataset. The SFN effectively improves the accuracy for
most of the actions. For example, the accuracy increases to
19.72% for the action ”typing on a keyboard”. Note that
the accuracy is clearly worse for ”reading” and ”writing”
than for the other actions because these two actions involve

TABLE X: Results of all skeleton-based methods on the UTD-
MHAD dataset

Method Accuracy%
Cov3DJ [56] 85.58

Deep RNN [38] 66.10
JTM + CNN [22] 85.81

Optical Spectra + CNN [10] 86.97
3DHOT-MBC [7] 84.40
JDM +CNN [41] 88.10

Baseline 63.16
Baseline+SFN0|0.5 84.95 | 87.75

Baseline+MSSFN0|0.5 87.44 | 88.67
TS 70.51

TS+SFN0|0.5 91.16 | 91.89
TS+MSSFN0|0.5 92.13 | 92.33

similar temporal relationships, so an LSTM network using
only temporal information cannot distinguish them.

E. HAR Network

We evaluate the performance of the SFN variants when com-
bined with three different HAR networks to further validate
our method. The results are shown in Fig. 13.

Fig. 13 shows that both the SFN and MSSFN meth-
ods outperform mixup in terms of accuracy, even when
the transformation network is not used during testing
(SFN0 and MSSFN0). For example, on NTU-CS, the base-
line model achieved an accuracy of only 70.02%, where-
as baseline+MSSFN0.5 achieved an accuracy of 83.52%,
an increase of 13.5%. Even when the transformation net-
work was not used during testing, the accuracy of the
baseline+MSSFN0.5 model was 80.31%, an increase of
10.29%. As the complexity of the HAR network increases, the
performance with an SFN or MSSFN also increases. There-
fore, our method can effectively improve the generalization
ability of an HAR network.

Note that MSSFN0 performs slightly worse than SFN0 in
terms of accuracy in some cases because an MSSFN has more
parameters to be learned. Therefore, it is more difficult for
an MSSFN to converge. We believe that this problem can be
alleviated by increasing the number of training epochs.

F. Comparisons with State-of-the-arts methods

In this section, we compare our method with other state-
of-the-art methods on the NTU RGB+D, UTD-MHAD and
Northwestern-UCLA datasets.

1) NTU RGB+D dataset: Table. IX presents the results of
the various methods on the NTU dataset and shows that the
proposed method greatly improves the performance of both the
baseline model and the TS model. For example, even when
the transformation network was not used during testing, the
accuracy of the baseline model increased by 10.29% with our
method, reaching 80.31%, better than the results of most of
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TABLE XI: Results of all skeleton-based methods on the
Northwestern-UCLA dataset.

Method Accuray%
Lie group [58] (reported by [21]) 74.20

Actionlet ensemble [60] 76.60
HBRNN (reported by [21]) 78.52
Enhanced visualization [21] 86.09

EnTS-LSTM [55] 89.22
Baseline 63.16

Baseline+SFN0|0.5 78.21 | 79.57
Baseline+MSSFN0|0.5 81.30 | 82.61

TS 65.00
TS+SFN0|0.5 86.30 | 87.61

TS+MSSFN0|0.5 86.96 | 88.91

the existing methods. This finding illustrates the effectiveness
of our method in improving the generalization ability of an
HAR network for large-scale data.

2) UTD dataset: Table. X presents the results of the various
methods on the UTD dataset. Again, our method greatly
improves the performance of the baseline model and the TS
model. For example, the baseline model alone achieved an
accuracy of only 63.16%, while baseline+MSSFN0.5 achieved
an accuracy of 88.67%, an increase of 25.51%. Even when
the transformation network was not used during testing, the
baseline model achieved an accuracy of 87.44% with our
method, an increase of 24.28%.

3) NUCLA dataset: Table. XI presents the results of the
various methods on the NUCLA dataset. Again, the proposed
method greatly improves the performance of the baseline
model and the TS model. For example, the TS model alone
achieved an accuracy of only 65.00%, while TS+MSSFN0.5

achieved an accuracy of 88.91%, an increase of 23.91%.
Although our method achieves considerable improvement,

TS+MSSFN0.5 still performs worse than EnTS-LSTM in terms
of accuracy, probably because the NUCLA dataset contains
fewer classes (10 classes) than the other datasets. Therefore,
data augmentation methods based on sample fusion cannot
produce more diverse samples.

VI. CONCLUSION

In this paper, a data augmentation method called an SFN,
which can be trained in an end-to-end manner along with an
HAR network, is proposed for skeleton-based action recogni-
tion. During training, for a given sample pair, one sample is
input into a transformation network to obtain a preprocessed
sample that is enhanced compared with the original sample.
Then, an adaptive fusion strategy is applied to fuse the pre-
processed sample and the other sample from the sample pair.
Subsequently, the fused sample is sent to the skeleton-based
HAR network, and the transformation and HAR networks are
trained in an end-to-end manner. During testing, the samples
preprocessed by the transformation network and the original
samples are input into the HAR network, and the outputs

of the HAR network are fused at the decision level. Our
method improves the performance of the baseline model by
nearly 12% on the NTU RGB+D dataset, which is the largest
available dataset for skeleton-based recognition. This result
verifies the efficacy of our method compared with other
state-of-the-art data augmentation methods and other HAR
networks.

In future work, other network architectures, for example,
a DenseNet architecture, will be incorporated into SFNs to
increase the effectiveness of HAR. We can also expand the
SFN approach to other modalities, e.g., RGB and depth, and
can enhance its performance by using a deeper AE network.
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