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a b s t r a c t 

Human action recognition based on skeletons has wide applications in human–computer interaction and 

intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s 

more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these 

problems in one goal, this work presents an enhanced skeleton visualization method for view invariant 

human action recognition. Our method consists of three stages. First, a sequence-based view invariant 

transform is developed to eliminate the effect of view variations on spatio-temporal locations of skele- 

ton joints. Second, the transformed skeletons are visualized as a series of color images, which implic- 

itly encode the spatio-temporal information of skeleton joints. Furthermore, visual and motion enhance- 

ment methods are applied on color images to enhance their local patterns. Third, a convolutional neural 

networks-based model is adopted to extract robust and discriminative features from color images. The 

final action class scores are generated by decision level fusion of deep features. Extensive experiments on 

four challenging datasets consistently demonstrate the superiority of our method. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human action recognition has been applied in various fields,

.g., human–computer interaction, game control and intelligent

urveillance. Earlier works [1–5] recognize actions from RGB data,

hich involves complex illumination conditions and cluttered

ackgrounds. With rapid advances of imaging technology in cap-

uring depth information in real-time, there has been a growing

nterest in solving these problems by using depth data generated

rom depth sensors [6–11] , particularly the cost-effective Microsoft

inect sensor [12] . 

Compared with RGB data, depth data generated by structured

ight sensors is more robust to changes in lighting conditions be-

ause depth values are estimated by infrared radiation without

elating it to visible light. Subtracting foreground from cluttered

ackground is easier using depth, as the confusing texture and

olor information from cluttered backgrounds are ignored. In addi-

ion, RGB-D cameras (e.g., Kinect) provide depth maps with appro-

riate resolution and accuracy, which provide three-dimensional

nformation on the structure of subjects/objects in the scene. 
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Intuitively speaking, human body can be represented as an ar-

iculated system with hinged joints and rigid bones, and human

ctions can be denoted as movements of skeletons. With the im-

lementation of capturing skeletons from Kinect in real-time [13] ,

any works [14–16] have been conducted on skeleton-based ac-

ion analysis. These works are usually designed for action anal-

sis from a single view. However, a generic and reliable action

ecognition system for practical applications needs to be robust to

ifferent viewpoints while observing an action sequence. There-

ore, this paper develops a view-independent action recognition

ethod, which intends to eliminate the effect of viewpoint varia-

ions and proposes a compact yet discriminative skeleton sequence

epresentation. 

First, a sequence-based transform is applied on a skeleton se-

uence to make the transformed sequence invariant to the ab-

olute body position and the initial body orientation. Since the

epth sensor is usually fixed, one transform matrix is able to iden-

ify the orientation of the depth sensor. Intuitively, any skeleton

rom the sequence can generate the transform matrix. To elimi-

ate the effect of noise on skeletons, we jointly use all torso joints

rom the sequence to formulate the transform matrix. In previ-

us works [17–19] , each skeleton is transformed by a transform

atrix which is estimated from itself. These methods suffer from

oisy skeletons, since each skeleton only contains limited number

f skeleton joints, which are usually noisy. What’s worse, the origi-
 for view invariant human action recognition, Pattern Recognition 
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Fig. 1. Pipeline of our method. 
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nal spatio-temporal relationships among skeletons may be harmed

by transforming skeletons with different transform matrices. Com-

pared with these methods, our sequence-based transform is more

robust to noise, since all torso joints from a sequence are used to

estimate one transform matrix. Our method is also able to pre-

serve relative spatio-temporal relationships among skeletons, since

all skeletons are synchronously transformed by one transform ma-

trix. 

Second, the transformed sequence is visualized as a series of

color images, which encode both spatial and temporal distributions

of skeleton joints in a compact and descriptive manner. Specifically,

skeleton joints are treated as points in a five dimensional (5D)

space, including three dimensions of coordinates, one dimension

of time label and one dimension of joint label. Then, two elements

from the space are selected to construct a two dimensional (2D)

coordinate space, and other three elements from the space is used

to build a three dimensional (3D) color space. These two spaces

are jointly used to generate color images, where each color pixel

denote a point from the 5D space. To enhance the local patterns of

color images, we apply the mathematical morphology method to

highlight the colored pixels. To make color images more sensitive

to motions, we develop a weighting scheme to emphasize skeleton

joints with salient motions. 

The proposed pipeline in Fig. 1 is most related to previous

works [20,21] , where skeleton sequences are described as color im-

ages which served to CNNs model for classification. In these meth-

ods, color images implicitly involve local coordinates, joint labels

and time labels of skeleton joints. However, they either overem-

phasize the spatial or the temporal distribution of skeleton joints.

Compared with these methods, our method captures more abun-

dant spatio-temporal cues, since the generated color images ex-

tensively encode both spatial and temporal cues. Moreover, our

method involves a new transform approach to eliminate the prob-

lem of viewpoint changes, which is ignored by [20,21] . Addition-

ally, the weighted fusion method in our multi-stream CNNs model

also performers better than the traditional average fusion method

used in [20] . 

Generally, our method contains three main contributions: 

• A sequence-based view invariant transform is developed to ef-

fectively cope with view variations. This method eliminates

the effect of view variations, meanwhile preserves more rel-

ative motions among original skeleton joints than traditional

skeleton-based transform methods, e.g., [17–19] . 
• An enhanced skeleton visualization method is proposed to

represent a skeleton sequence as a series of visual and mo-

tion enhanced color images, which implicitly describe spatio-

temporal skeleton joints in a compact yet distinctive manner.

This method outperforms related works [20,21] by capturing

more abundant spatio-temporal information of skeleton joints. 
• A multi-stream CNN fusion model is designed to extract and

fuse deep features from enhanced color images. Our pro-

posed method consistently achieves the highest accuracies on
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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four benchmark datasets as compared to the state-of-the-art

skeleton-based action recognition methods. 

The remainder of this paper is organized as follows.

ection 2 briefly reviews related work. Section 3 presents the

equence-based transform method. Section 4 provides the en-

anced skeleton visualization method. Section 5 describes the

tructure of multi-stream CNN model. Section 6 reports the

xperimental results and discussions. Section 7 concludes the

aper. 

. Related work 

View invariant action recognition using skeletons is challeng-

ng for two main reasons. First, appearances of skeletons under dif-

erent views change dramatically, leading to inter-varieties among

ame types of actions. Second, it remains unsolved to effectively

epresent spatio-temporal data [22] , including the skeletons. This

ection reviews related works aiming at solving above challenges. 

.1. View invariant transform 

As for RGB or depth data, previous works [23,24] extract self-

imilarity matrix (SSM) feature, which refers to the similarity be-

ween all pairs of frames. Despite that SSM shows high stability

nder view variations, this temporal self-similarity descriptor is

ot strictly view invariant. With the exact locations of skeleton

oints, one can directly use estimated transform matrix to make

keletons strictly view invariant. Xia et al. [17] aligned spherical

oordinates with the person’s specific direction, where the hip cen-

er joint is defined as the origin, the horizontal reference vector

s defined as the direction from the left hip center to the right

ip center projected on the horizontal plane, and the zenith ref-

rence vector is selected as the direction that is perpendicular to

he ground plane and passes through the coordinate center. Fol-

owing [17] , Jiang et al. [18] also translated skeletons to a new co-

rdinate system which is invariant to the absolute body position

nd orientation. In [17,18] , the original skeletons are assumed to

e perpendicular to the ground plane. Without this assumption,

aptis et al. [19] provided a more flexible view invariant transform

ethod, where principal components are calculated for the torso

oints and the zenith reference vector is selected as the first prin-

ipal component which is always aligned with the longer dimen-

ion of the torso. Generally speaking, these methods establish a

pecific coordinate system for each skeleton. However, this scheme

s sensitive to noisy skeletons and may lead to the loss of original

patio-temporal relationships among different skeletons. 

.2. Spatio-temporal data representation 

Hand-crafted methods: traditional methods design hand-crafted

eatures to represent spatio-temporal skeleton joints and use time

eries models to model the global temporal evolution. Xia et al.
 for view invariant human action recognition, Pattern Recognition 
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17] modeled the spatial-temporal skeleton joints as a time se-

ies of visual words. Skeleton joints on each frame was repre-

ented by histograms of 3D joint locations (HOJ3D) within a modi-

ed spherical coordinate system. These HOJ3D were clustered into

isual words, whose temporal evolutions were modeled by dis-

rete hidden Markov models (HMMs). Ofli et al. [25] represented

patio-temporal skeleton joints as sequence of the most informa-

ive joints (SMIJ). At each time instant, the most informative skele-

al joints which show highly relation to the current action are se-

ected to denote the current skeleton. The dynamic motion cues

mong skeleton joints are modeled by linear dynamical system pa-

ameters (LDSP). Yang et al. [26] used joint differences to com-

ine static postures and overall dynamics of joints. To reduce re-

undancy and noise, they obtained EigenJoints representation by

pplying Principal Component Analysis (PCA) to the joint differ-

nces. Beyond using joint locations or the joint angles to repre-

ent a human skeleton, Vemulapalli et al. [27] modeled the 3D ge-

metric relationships between various skeleton joints using rota-

ions and translations in 3D space. However, hand-crafted features

an barely effectively model complex spatio-temporal distributions,

ince these features are usually shallow and dataset-dependent. 

RNN-based methods: Recurrent Neural Networks (RNN) models

nd Long-Short Term Memory (LSTM) neurons have been used

o model temporal evolutions of skeleton sequences. Du et al.

28] proposed an end-to-end hierarchical RNN to encode the rel-

tive motion between skeleton joints. In terms of body structure,

he skeleton joints are divided into five main parts, which are fed

nto five independent subnets to extract local features. Since LSTM

s able to learn representations from long input sequences using

pecial gating schemes, many works chose LSTM to learn complex

ynamics of actions. By collecting a large scale dataset, Shahroudy

t al. [29] showed that LSTM outperforms RNN and some hand-

rafted features. To learn the common temporal patterns of par-

ial joints independently, they proposed a part-aware LSTM which

as part-based memory sub-cells and a new gating mechanism.

o extract the derivatives of internal state (DoS), Veeriah et al.

30] proposed a differential RNN by adding a new gating mecha-

ism to the original LSTM. Zhu et al. [31] used LSTM to automat-

cally learn the co-occurrence features of skeleton joints. Observ-

ng that previous RNN-based methods only model the contextual

ependency in the temporal domain, Liu et al. [32] introduced a

patial-temporal LSTM to jointly learn both spatial and temporal

elationships among joints. However, RNN-based methods trend to

verstress the temporal information [20] . 

CNN-based methods: CNN models have achieved promising per-

ormance in image recognition. Many methods have been devel-

ped to encode video sequences as images, which are further ex-

lored by CNN. Simonyan et al. [33] proposed a two-stream CNN

rchitecture incorporating spatial and temporal networks. They uti-

ized each frame as input for the spatial network and accumulated

nter-frame optical flows as inputs for the temporal network. Bilen

t al. [22] proposed a dynamic image representation, which is a

ingle RGB image generated by applying approximate rank pooling

perator on raw image pixels of a sequence. Wang et al. [34] ac-

umulated motions between projected depth maps as depth mo-

ion maps (DMM), which are served as inputs for CNN. Gener-

lly speaking, these methods apply operators, e.g., subtraction, rank

ooling and accumulation, on raw pixels of a sequence to con-

ert a sequence to an image. Despite the efficiency, these opera-

ors roughly compress original data, leading to the loss of distinct

patio-temporal information. 

Aiming at encoding more spatio-temporal information, Wang

t al. [20] projected local coordinates of skeleton joints on three

rthogonal planes. On each plane, 2D trajectories of joints formed

 color image, where time labels and joint labels are mapped to

olors. The generated image directly reflects the local coordinates
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
f joints and implicitly involves the temporal evolutions and joint

abels. Du et al. [21] concatenated skeleton joints in each frame ac-

ording to their physical connections, and used three components

 x, y, z ) of each joint as the corresponding three components ( R,

, B ) of each pixel. The generated image directly reflects the tem-

oral evolutions and joint labels and implicitly involves the local

oordinates of skeleton joints. 

Generally speaking, CNN can automatically explore distinctive

ocal patterns of images, therefore it is an effective way to encode

 spatio-temporal sequence as images. However, images generated

y previous works can barely capture sufficient spatio-temporal in-

ormation. Thus, a more descriptive way is needed to encode se-

uences as images. 

. Sequence-based view invariant transform 

To make skeleton sequence invariant to viewpoints, traditional

ork [19] developed a skeleton-based transform method, which

ransforms each skeleton to a standard pose. However, this method

emoves partial relative motions among the original skeletons. Tak-

ng an action “rotating the waist” as an example, rotations of the

aist will be removed by the skeleton-based transform in [19] ,

ince each skeleton is transformed to be a standard pose, e.g., fac-

ng the front. To this end, we propose a sequence-based transform

ethod, which synchronously transforms all skeletons, therefore

etaining relative motions among skeletons. 

Specifically, given a skeleton sequence I with F frames, the n th

keleton joint on the f th frame is formulated as p 
f 
n = (x 

f 
n , y 

f 
n , z 

f 
n ) 

T ,

here f ∈ (1 , . . . , F ) , n ∈ (1 , . . . , N) , N denotes the total number of

keleton joints in each skeleton. The value of N is determined by

ome skeleton estimation algorithms. Fig. 2 shows two commonly

sed joint configurations. In this section, we use the joint configu-

ation in the NTU RGB+D dataset [29] , where N equals to 25. Each

oint p 
f 
n contains five components, i.e., three local coordinates x, y,

 , time label f and joint label n . Therefore, p 
f 
n can be mapped to a

oint in a 5D space �0 : 

 x, y, z, f, n ] T ∈ �0 . (1)

ince three local coordinates x, y, z are sensitive to view variations,

e transform them to view invariant values ˆ x , ̂  y , ̂  z by: 

 ̂

 x , ̂  y , ̂  z , 1] T = P 

(
R 

α
x , 0 

)
P 

(
R 

β
y , 0 

)
P 

(
R 

γ
z , d 

)
[ x, y, z, 1] T , (2)

here the transform matrix P is defined as: 

( R , d ) = 

[
R d 

0 1 

]
4 ×4 

, (3) 

here R ∈ R 

3 ×3 is a rotation matrix, d ∈ R 

3 is a translation vector

iven as: 

 = − 1 

F 

F ∑ 

f=1 

p f 
1 
, (4) 

hich moves the original origin to the “hip center”. Let R 

θ
z denote

otating the original coordinate around Z axis by θ degree, which

s formulated as: 

 

θ
z = 

[ 

cosθ sin θ 0 

−sinθ cos θ 0 

0 0 1 

] 

. (5) 

imilarly, rotation matrix R 

θ
x and R 

θ
y are defined as: 

 

θ
x = 

[ 

cosθ 0 −sinθ
0 1 0 

sin θ 0 cos θ

] 

, R 

θ
y = 

[ 

1 0 0 

0 cos θ −sinθ
0 sin θ cos θ

] 

. (6) 
 for view invariant human action recognition, Pattern Recognition 
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Fig. 2. Configuration of body joints in the NTU RGB+D dataset [29] and UTKinect-Action dataset [17] . Torso joints are colored in yellow. In (a), as an example, the labels of 

the torso joints are: 1-hip center, 2-middle of the spine, 5-left shoulder, 9-right shoulder, 13-left hip, 17-right hip, 21-spine. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Illustration of our view invariant transform. v denotes the direction from 

“right hip” to “left hip”. For the new coordinate system, “hip center” is selected 

as origin and x , y , z are the directions of new axes. z is aligned with the longer 

dimension of the torso. x is the direction which is vertical to z and has minimum 

angle with v . y is the product of z and x . It is noted that all skeletons in a sequence 

are used to establish one coordinate system. Here, only one skeleton is illustrated 

to facilitate observation. 

 

 

 

 

 

 

m  

c  

c  

e  

t

 

p  

W  

x  

fi

 

w

v  

w  

“  

q  

y  

i  

s  

(  

m

 

s

�  

w

4

4

 

m  

p  

a  
Suppose z is the first principal component of the result gener-

ated by applying PCA to a matrix M : 

M = 

⋃ 

n ∈ φ, f∈ (1 , ... ,F ) 

p f n , (7)

where φ ∈ {1, 2, 5, 9, 13, 17, 21} denotes the set of seven torso

joints (see Fig. 2 (a)). Matrix M is named as the torso matrix, which

consists of 7 × F rows and three columns. As shown in Fig. 3 , the

first principal component z is always aligned with the longer di-
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
ension of the torso, therefore it is used as the Z axis of the new

oordinate system. Note that the orientation pointing from the “hip

enter” to the “spine” can provide a rough estimation of z . How-

ver, this result is not accurate, since joint location suffers from

he effect of noise. 

For the second principal component of M , the orientation is ex-

ected to denote the X (or Y ) axis of the new coordinate system.

hile, the orientation is not so easily inferred [19] . Instead, we use

 to denote the X axis of the new coordinate system, which is de-

ned as: 

x = arg min 

x 
arccos 

〈
x , v 

〉
, 

s.t. x ⊥ z 
(8)

here vector v is defined as: 

 = 

1 

F 

F ∑ 

f=1 

(p f 
17 

− p f 
13 

) , (9)

hich denotes the mean vector for the direction pointing from

right hip” to “left hip” based on all F frames in a skeleton se-

uence. The Y axis of the new coordinate system is denoted as

 = z × x . Parameters α, β and γ can be determined by transform-

ng x , y , z to [1, 0, 0] T , [0, 1, 0] T , [0, 0, 1] T using Formula 2 . Fig. 4

hows the transformed sequences using our method and [19] . From

e) and (f), we find that our method can preserve more relative

otions (e.g., rotations) among skeletons than [19] . 

Combining view invariant values ˆ x , ̂  y , ̂  z with f and n , the original

pace �0 is transformed as a new space �1 : 

1 = [ ̂  x , ̂  y , ̂  z , f, n ] T , (10)

hich is invariant to viewpoint changes. 

. Enhanced skeleton visualization 

.1. Skeleton visualization 

Data visualization [35] refers to the techniques used to com-

unicate data or information by encoding it as visual objects (e.g.,

oints, lines or bars) contained in graphics. One goal of data visu-

lization is to communicate information in high dimensional space
 for view invariant human action recognition, Pattern Recognition 
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Fig. 4. Comparison between our sequence-based transform and traditional skeleton-based transform [19] . (a) is an original skeleton sequence of “throw”. To facilitate obser- 

vation, each skeleton is colored by inferring to the time label. (b) is the transformed sequence by using our method and (c) is the transformed sequence by using [19] . To 

show the differences between (a), (b) and (c), each skeleton is simplified as a link between “right hip” joint and “left hip” joint, and the skeleton sequence is correspondingly 

simplified as a sequence of links. (d), (e) and (f), respectively show the link sequence of (a), (b) and (c) from the view of X − Y plane. (d) indicates that there exist rotations 

among original skeletons. (e) shows that the rotations are preserved in transformed skeletons, while (f) shows that the rotations are ignored. 
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learly and efficiently to users. Diagrams used for data visualiza-

ion include bar chart, histogram, scatter plot, stream graph, tree

ap and heat map. Heat map is a graphical representation of data

here the individual values contained in a matrix are represented

s colors. There are many different color schemes that can be used

o illustrate the heat map. Rainbow color maps are often used,

s humans can perceive more shades of color than they can of

ray, and this would purportedly increase the amount of detail per-

eivable in the image. In terms of action recognition, Wang et al.

34] proposed an improved rainbow transform to highlight the tex-

ure and edges of depth motion maps. However, color maps (like

he “jet” color map) generated by rainbow transform have uncon-

rolled changes in luminance, making some regions (like yellow

nd cyan regions) appear more prominent than regions of the data

hat are actually most important [36] . 

We propose a new type of heat map to visualize spatio-

emporal skeleton joints as a series of color images. The key idea

s to express a 5D space as a 2D coordinate space and a 3D color

pace. As shown in Fig. 5 , each joint is firstly treated as a 5D point

 x, y, z, f, n ), where ( x, y, z ) mean the coordinates, f means the time

abel and n means the joint label. Function � is defined to permute

lements of the point: 

( j, k, r, g, b) = �
{
( ̂  x , ̂  y , ̂  z , f, n ) , c 

}
, (11)

here c indicates that function � returns the c th type of ranking.

here are 10 types of ranking in total. This is because 10 equals to

hoose (5, 2), where two variables are chosen from five variables to

enote image coordinates. We use j and k as local coordinates and

se r, g, b as the color values of location ( j, k ). To this end, r, g,

 are normalized to [0, 255]. Using the c th type of ranking, three

ray images I R c , I 
G 
c and I B c are constructed as: 

I R c ( j, k ) I G c ( j, k ) I B c ( j, k ) 
]

= 

[
r g b 

]
, (12)
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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here I R c ( j, k ) stands for the pixel value of I R c on location ( j, k ).

hus, the c th color image is formulated as: 

 c = 

{
I R c I G c I B c 

}
. (13) 

Operating function � on the point ( x, y, z, f, n ) can gener-

te 5 × 4 × 3 × 2 × 1 = 120 types of ranking. Each type of ranking

orresponds to a color image. However, generating so many im-

ges needs huge time and computation cost. Moreover, these im-

ges may contain redundant information. For example, two images

hare the same color space ( z, f, n ) while their coordinate spaces

re respectively denoted as ( x, y ) and ( y, x ). We observe that one

mage can be transformed to the other by rotating 90 degrees. In

ther words, both images encode the same spatio-temporal cues

f skeleton joints. For another example, two images share the same

oordinate space ( x, y ) while their color spaces are respectively de-

oted as ( z, f, n ) and ( z, n, f ). We observe that both images are the

ame in shapes and slight different in colors, indicating that most

f the spatio-temporal cues which they encoded are the same.

enerally, we argue that permutation in the coordinate space or

he color space will generate similar images. Therefore, this pa-

er uses ten types of ranking shown in Fig. 5 . These ranking re-

ults ensure that each element of the point ( x, y, z, f, n ) can be as-

igned to the coordinate space and the color space. Fig. 6 (d) shows

he ten color images extracted from an action “throw”, where both

patial and temporal information of skeleton joints are encoded in

hese images. Fig. 6 also compares our method with [20] and [21] ,

hich can be considered as two specific cases of our visualization

ethod. As can be seen, images in (b) are similar to sub-figure

1, #2, #5 in (d). These images mainly reflect the spatial distri-

ution of skeleton joints. The image in (c) is similar to sub-figure

10 in (d). This image mainly reflects the temporal evolution of

keleton joints. In (d), those sub-figures highlighted by red bound-

ng boxes provide distinct spatial and temporal distributions, which

ave never been explored by previous works, e.g., [20] and [21] . 
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Fig. 5. Pipeline of our data visualization method. 

Fig. 6. Illustration of color images generated by different data visualization methods. (a) shows skeletons of an action “throw”. (b), (c) and (d), respectively shows color 

images generated by [20] , [21] and our method. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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4.2. Visual enhancement 

As shown in Fig. 7 (a), the visual patterns of color images are

sparse, due to the limited number of skeleton joints. To enhance

visual patterns, we introduce mathematical morphology (MM) [37] ,

which is a theory and technique for the analysis and process-

ing of geometrical structures, based on set theory, lattice theory,

topology, and random functions. MM is most commonly applied

to digital images, but it can be employed as well on graphs, sur-

face meshes, solids, and many other spatial structures. The basic

morphological operators are erosion, dilation, opening and closing,

where the erosion operator means to probe a binary image with a

simple, pre-defined shape, drawing conclusions on how this shape

misses the shapes in the image. This simple “probe” is called the

structuring element, and is itself a binary image (i.e., a subset of

the space or grid). Specifically, the erode operator � is defined as:

A � E = 

⋂ 

e ∈ E 
A −e , (14)

where A is a binary image and E is a structuring element. 
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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To enlarge regions of colored pixels, we apply the erosion oper-

tor on I c : 

 

 c = 

{
I R c � E I G c � E I B c � E 

}
, (15)

here each channel of I c is eroded and then composed to form the

roded color image. Fig. 7 (b) shows color images processed by ero-

ion operator. Compared with the initial images ( Fig. 7 (a)), textures

n processed images are enhanced. Note that we set E as an open

isk of radius 5, centered at the origin. 

.3. Motion enhancement 

Intuitively, human tends to pay attention to moving objects and

gnore static parts. Motivated by this human nature, informative

oints with salient motions are selected to represent original skele-

on sequences [18] . With selected joints, similar actions can be

istinguished easier, since these joints are more directly related

o actions than those joints which keep nearly static. Therefore,

e highlight the effect of motion on generating color images by

eighting skeleton joints according to their motions. 
 for view invariant human action recognition, Pattern Recognition 
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Fig. 7. A skeleton sequence “throw” is visualized as color images. (a) shows the initially obtained color images. (b) is processed by visual enhancement. (c) and (d) are 

processed by both visual enhancement and motion enhancement, where ρ = 0 . 5 for (c) and ρ = 1 for (d). See text for explanation of red circled regions. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Given a skeleton joint p 
f 
n = (x 

f 
n , y 

f 
n , z 

f 
n ) 

T , we estimate its motion

nergy by: 

f 
n = || p f n − p f−1 

n || , (16)

here f > 1 and operator || · || calculates the Euclidean metric. The

ccumulated motion energy of p 
f 
n is defined as: 

n = 

F ∑ 

f=2 

ξ f 
n . (17) 

ig. 8 shows weighted skeleton joints, where skeleton joints with

arger weights are colored in brighter red. Obviously, skeleton

oints in brighter red are more related to the action “throw”. 

To control the effect of motion on color images, we introduce a

arameter ρ and define the weight of p 
f 
n as: 

 n = ρ · norm { ξn } + (1 − ρ) , (18)

here 0 ≤ ρ ≤ 1 and function norm normalizes ξ n to [0, 1]. Sup-

ose one pixel is generated by the n th joint and its color values

re denoted as [ r g b ]. Then, we use w n to weight the color values:

 ̃

 r ˜ g ˜ b ] = (1 − w n )[255 255 255] + w n [ r g b] , (19)

here pixel with larger w n will mostly keep its original color, and

he color of pixel with smaller w n will fade (turns from original

olor to white). Fig. 7 (c) and (d) show color images generated by

eighted skeleton joints. Red circles highlight the regions which

re dramatically affected by using different weights. We observe

hat the colors of pixels, generated by joints with small motions,

end to fade when the parameter ρ increases. In this way, those

ixels which are generated by joints with salient motions are em-

hasized. As shown in the first column of Fig. 7 (d), the highlighted

oints on the hands are more related to the action “throw”. 

. Multi-stream CNN fusion 

To obtain more discriminative feature from spatio-temporal

keleton joints, we propose a multiple CNN-based model to ex-

ract deep features from color images generated in previous sec-

ion. Inspired by two-stream deep networks [33] , the proposed

odel (shown in Fig. 9 ) involves 10 modified AlexNet [38] , where

ach CNN uses one type of color images as input. The posterior
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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robabilities generated from each CNN are fused as the final class

core. 

For an input sequence I m , we obtain a series of color images:

 I m 

c } 10 
c=1 

. Each image is normalized to 224 × 224 pixels to take ad-

antage of pre-trained models. Mean removal is adopted for all in-

ut images to improve the convergence speed. Then, each color

mage is processed by a CNN. For the image I m 

c , the output Y c 

f the last fully-connected ( fc ) layer is normalized by the softmax

unction to obtain the posterior probability: 

prob(l | I m 

c ) = 

e ϒ
l 
c ∑ L 

k =1 e 
ϒk 

c 

, (20)

hich indicates the probability of image I m 

c belonging to the l th

ction class. L is the number of total action classes. 

The objective function of our model is to minimize the

aximum-likelihood loss function: 

 ( I c ) = −
M ∑ 

m =1 

ln 

L ∑ 

l=1 

δ(l − s m 

) prob(l | I m 

c ) , (21)

here function δ equals one if l = s m 

and equals zero otherwise,

 m 

is the real label of I m 

c , M is the batch size. For sequence I, its

lass score is formulated as: 

core (l | I) = 

1 

10 

10 ∑ 

c=1 

prob(l | I c ) , (22)

here score (l | I) is the average of the outputs from all ten CNN

nd prob(l | I c ) is the probability of image I c belonging to the lth

ction class. To explore the complementary property of deep fea-

ures generated from each CNN, we introduce a weighted fusion

ethod: 

core (l | I) = 

1 

10 

10 ∑ 

c=1 

ηc prob(l | I c ) , (23)

here ηc equals to one or zero, indicating whether the c th CNN

s selected or not. Therefore, score (l | I) is the fused class score

ased on the selected CNNs. The method of choosing parameter ηc 

s discussed in Section 6.6.4 . In following, these two types of fusion

trategies are respectively named as average fusion and weighted

usion methods. 
 for view invariant human action recognition, Pattern Recognition 
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Fig. 8. Illustration of weighing skeleton joints according to the motion energies. In (a), the n th row and f th column shows the motion energy of skeleton joint p f n . Note that 

the joint label indices indicate joints shown in Fig. 2 (a). In (b), the n th bar shows the accumulated motion energy of the n th skeleton joint. (c) shows several snaps from a 

skeleton sequence “throw”. (d) shows several weighted snaps, where skeleton joints with larger weights are colored in brighter red. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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6. Experiments and discussions 

Our method is evaluated on Northwestern-UCLA [39] , UWA3DII

[40] , NTU RGB+D [29] and MSRC-12 [41] datasets. The first three

datasets contain severe view variations and noisy skeleton joints.

The NTU RGB+D dataset is so far the largest dataset for skeleton-

based action recognition, which contains challenges like inter-

similarities and intra-varieties. Since related works [20,21] cannot

tackle with view variations, we ensure fair comparison between

our method and them on MSRC-12 dataset. 

6.1. Implementation details 

In our model, each CNN contains five convolutional layers and

three fc layers. The first and second fc layers contain 4096 neu-

rons, and the number of neurons in the third one is equal to the

total number of action classes. Filter sizes are set to 11 × 11, 5 ×
5, 3 × 3, 3 × 3, 3 × 3. Local Response Normalisation (LRN), max

pooling and ReLU neuron are adopted and the dropout regularisa-

tion ratio is set to 0.5. The network weights are learned using the

mini-batch stochastic gradient descent with the momentum value

set to 0.9 and weight decay set to 0.0 0 0 05. Learning rate is set to

0.001 and the maximum training cycle is set to 200. In each cycle,
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
 mini-batch of 50 samples is constructed by randomly sampling

0 images from training set. The implementation is based on Mat-

onvNet [42] with one NVIDIA GeForce GTX 1080 card and 8 G

AM. 

Our model can be directly trained using samples from the train-

ng set. In this case, all layers are randomly initialized from [0,

.01]. To increase the number of training samples, we randomly

ip the training sequences about the y -axis to generate two se-

uences from each sequence. It is noted that these training se-

uences have already been processed by the sequence-based trans-

orm method and the synthesized sequences are further visualized

s color images and served as training samples. This type of data

ugmentation method is a standard procedure in CNN to help the

odel learning better due to limited number of training samples

43] . Let Original Samples and Synthesized Samples respectively de-

ote above two settings. Instead of training the CNN model from

cratch using the training samples of each action dataset, we can

lso take advantage of pre-trained models on large scale image

atasets such as ImageNet, and fine tune our model. Specifically,

e fine tune our model by initializing the third fc layer from

0, 0.01] and initializing other layers from pre-trained model on

LSVRC-2012 (Large Scale Visual Recognition Challenge 2012). Let

ynthesized + Pre-trained denote fine tune our model with synthe-
 for view invariant human action recognition, Pattern Recognition 
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Fig. 9. Proposed skeleton-based action recognition using multi-stream CNN. 

Fig. 10. Convergence curves on the MSRC-12 dataset [41] . The first type of color image is used as input for CNN. Error rate almost converges when the training epoch equals 

to 200. 
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ized samples. Fig. 10 shows the convergence curves on the MSRC-

2 dataset [41] , where the error rate trends to converge when the

raining epoch grows to 200. This result shows the effectiveness of

ur implementations for CNN model. 

.2. Northwestern-UCLA dataset 

The Northwestern-UCLA dataset [39] contains 1494 sequences

overing 10 action categories: “pick up with one hand”, “pick up

ith two hands”, “drop trash”, “walk around”, “sit down”, “stand

p”, “donning”, “doffing”, “throw” and “carry”. Each action is per-

ormed one to six times by ten subjects. This dataset contains data
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
aken from a variety of viewpoints (see Fig. 11 ). Following [39] , we

se samples from the first two cameras as training data, and the

amples from the third camera as test data. 

Table 1 shows overall recognition accuracies of various meth-

ds. According to input data, these methods can be categorized

nto depth-based, skeleton-based and hybrid-based methods. Here,

he hybrid data includes depth and skeleton data. According to

he type of extracted features, we can also classify these meth-

ds into hand-crafted-based, RNN-based and CNN-based methods.

ince we use sole skeleton data, those skeleton-based methods, i.e.,

OJ3D [17] , LARP [27] and HBRNN-L [28] , are most related to our
 for view invariant human action recognition, Pattern Recognition 

http://dx.doi.org/10.1016/j.patcog.2017.02.030


10 M. Liu et al. / Pattern Recognition 0 0 0 (2017) 1–17 

ARTICLE IN PRESS 

JID: PR [m5G; March 11, 2017;18:41 ] 

Fig. 11. Skeleton snaps from the Northwestern-UCLA dataset [39] . 

Table 1 

Results on the Northwestern-UCLA dataset [39] (cross view protocol [39] ). 

Data Feature Method Accuracy(%) 

Depth Hand-crafted HON4D [44] 39.90 

SNV [45] 42.80 

AOG [39] 53.60 

HOPC [40] 80.00 

CNN HPM + TM [46] 92.00 

Hybrid Hand-crafted AE [47] 76.00 

Skeleon Hand-crafted HOJ3D [17] 54.50 

LARP [27] 74.20 

RNN HBRNN-L [28] 78.52 

CNN Original Samples ( ours ) 86.09 

Synthesized Samples ( ours ) 89.57 

Synthesized + Pre-trained ( ours ) 92.61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Confusion matrix on the Northwestern-UCLA dataset [39] . 

Fig. 13. Skeleton snaps from the UWA3DII dataset [40] . 
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method. HOJ3D [17] is designed to tackle with viewpoint changes.

However, HOJ3D only achieves 54.50% on this dataset. The rea-

son is that each skeleton is assumed to be vertical to the ground

[17] . Therefore, HOJ3D can barely perform well with various views,

such as top view in this dataset. LARP [27] performs better than

HOJ3D, since LARP models relationships among skeletons by trans-

form parameters which suffer less from view changes. However,

the temporal information among skeletons are not properly en-

coded by LARP. To this end, HBRNN-L [28] models dynamic infor-

mation among skeletons and achieves 78.52%. 

Our method using Original Samples for training achieves 86.09%,

which outperforms LARP by 11.89% and outperforms HBRNN-L by

7.57%. The reason is that our method implicitly encodes both spa-

tial and temporal relationships among skeletons. Moreover, skele-

ton joints are transformed to be view invariant, therefore our

method suffers less from view changes. Since Synthesized Samples

provides more data for training, it achieves 3.48% higher than Orig-

inal Samples. Synthesized + Pre-trained achieves state-of-the-art re-

sult of 92.61%, which outperforms all other comparison methods.

This result shows the superiority of initializing our CNN with pre-

trained model. The confusion matrix of our method is shown in

Fig. 12 , where action “pick up with one hand” and action “pick

up with two hands” have large confusion with each other because

both actions contain similar motions and appearances, shown in

Fig. 11 . For similar reason, action “drop trash” and action “walk

around” also have high confusion. 

6.3. UWA3DII dataset 

The UWA3DII dataset contains 30 human actions performed

four times by ten subjects. Each action is observed from front view,

left and right side views, and top view. The dataset is challenging

because of varying viewpoints, self-occlusion and high similarity

among actions. For example, action “drinking” and action “phone

answering” have slightly different in the location of the hand. Ac-

tion “sitting down” and action “sitting down (chair)” are also simi-

lar (see Fig. 13 ), since the chair is not captured in skeleton data. For

cross-view action recognition, we follow the cross view protocol

in [40] , which uses samples from two views as training data, and
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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amples from the two remaining views as test data. Table 2 shows

verall recognition accuracies of different methods. Our method

chieves best performances under all types of settings. Based on

he mean performance, our method outperforms the second best

ethod HOPC [40] by a significant margin, which is 21.6%. 

.4. NTU RGB+D dataset 

The NTU RGB+D dataset [29] contains 60 actions performed

y 40 subjects from various views ( Fig. 14 (a)), generating 56,880

keleton sequences. This dataset also contains noisy skeleton joints

see Fig. 14 (b)), which bring extra challenge for recognition. Fol-

owing the cross subject protocol in [29] , we split the 40 subjects

nto training and testing groups. Each group contains samples cap-

ured from different views performed by 20 subjects. For this eval-

ation, the training and testing sets have 40,320 and 16,560 sam-

les, respectively. Following the cross view protocol in [29] , we use

ll the samples of camera 1 for testing and samples of cameras 2

nd 3 for training. The training and testing sets have 37,920 and

8,960 samples, respectively. 

Table 3 shows the performances of various methods on this

ataset. Since this dataset provides rich samples for training deep

odels, the RNN-based methods, e.g., ST-LSTM [29] , achieves high

ccuracy. Our method achieves nearly 10% higher than ST-LSTM

29] for both cross subject and cross view protocols. The confu-

ion matrix is shown in Fig. 15 . This result shows the effectiveness

f our method to tackle with challenges like view variations and

oisy skeletons in large scale of data. 
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Table 2 

Results on the UWA3DII dataset [40] (cross view protocol [40] ). 

Fig. 14. Skeleton snaps from the NTU RGB+D dataset [29] . 

Table 3 

Results on the NTU RGB+D dataset [29] (protocols of [29] ). 

Data Feature Method Cross subject(%) Cross view(%) 

Depth Hand-crafted HON4D [44] 30.56 7.26 

SNV [45] 31.82 13.61 

Hybrid Hand-crafted HOG 2 [48] 32.24 22.27 

Skeleton Hand-crafted Skeletal quads [49] 38.62 41.36 

LARP [27] 50.08 52.76 

Dynamic skeletons [50] 60.23 65.22 

RNN HBRNN-L [28] 59.07 63.97 

Deep RNN [29] 56.29 64.09 

Deep LSTM [29] 60.69 67.29 

Part-aware LSTM [29] 62.93 70.27 

ST-LSTM [32] 61.70 75.50 

ST-LSTM + TG [32] 69.20 77.70 

CNN Original Samples ( ours ) 75.97 82.56 

Synthesized Samples ( ours ) 77.69 83.67 

Synthesized + Pre-trained ( ours ) 80.03 87.21 
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Table 4 

Results on the MSRC-12 dataset [41] (cross subject protocal [20] ). 

Data Feature Method Accuracy(%) 

Skeleton Hand-crafted ELC-KSVD [51] 90.22 

Cov3DJ [15] 91.70 

CNN ConvNets [21] 84.46 

JTM [20] 93.12 

Original Samples ( ours ) 93.92 

Synthesized Samples ( ours ) 94.93 

Synthesized + Pre-trained ( ours ) 96.62 

s  

e  
.5. MSRC-12 dataset 

The MSRC-12 dataset [41] contains 594 sequences, i.e., 719,359

rames (approx. 6 h 40 min), collected from 30 people perform-

ng 12 gestures. This is a single view dataset, i.e., action samples

re captured from a single view. Therefore, the sequence-based

ransform method is not used to implement our method on this

ataset. Following the cross-subject protocol in [20] , we use se-

uences performed by odd subjects for training and even sub-

ects for testing. In Table 4 , ConvNets [21] and JTM [20] are most

elated to our visualization method. By extracting deep features,

21] achieves 84.46% and [20] achieves 93.12% on this dataset. Our

ethod achieves accuracy of 96.62% (see Fig. 16 ), which outper-

orms these methods by 12 . 16 and 3.50%. The reason is that our

ethod can properly encode both temporal and spatial cues of

d

Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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keleton joints, while ConvNets [21] and JTM [20] overemphasize

ither the temporal information or the spatial information. More

etailed analysis can be found in Section 6.6.4 . 
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Fig. 15. Confusion matrix on the NTU RGB+D dataset [29] . 

Fig. 16. Confusion matrix on the MSRC-12 dataset [41] . 
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6.6. Evaluation of individual components 

We use five settings to evaluate each component of our method.

As shown in Table 5 , the Data Visualization is used as a base-

line method and other four settings are variations of the baseline

method. 
Please cite this article as: M. Liu et al., Enhanced skeleton visualization
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.6.1. Sequence-based transform 

Table 6 evaluates view invariant transform methods. The results

how that view invariant transform methods outperform the Data

isualization which uses the original skeleton sequences on multi-

iew action datasets, e.g., Nothwestern-UCLA and NTU RGB+D.

e also observe that our Sequence-Based Transform outperforms

keleton-Based Transform on both multi-view datasets. The reason

s that our method preserves more spatio-temporal cues and shows

ore robustness to noisy data. 

.6.2. Visual enhancement 

Table 7 evaluates visual enhancement method. By enhancing

he visual patterns of color images, Visual Enhancement method

espectively achieves 3.27% and 4.18% higher than Data Visualiza-

ion on Northwestern-UCLA and NTU RGB+D datasets. These im-

rovements verify the validity of using mathematical morphology

o conduct visual enhancement. 

.6.3. Motion enhancement 

Table 8 evaluates motion enhancement method. Motion En-

ancement with parameter ρ= 1 respectively achieves 3.92% and

.71% higher than Data Visualization on Northwestern-UCLA and

TU RGB+D datasets. This result indicates that skeleton joints with

alient motions show more distinctive power to represent actions

han those skeleton joints which keep mostly static. 
 for view invariant human action recognition, Pattern Recognition 
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Table 5 

Five settings for evaluating different components of our proposed metho d. 

Data Visualization A skeleton sequence ⇒ data visualization ( Section 4.1 ) 

⇒ multiple CNN ( Section 5 ) ⇒ weighted fusion ( Section 5 ) 

Skeleton-Based Transform A skeleton sequence skeleton-based transform [13] ⇒ data visualization ( Section 4.1 ) 

⇒ multiple CNN ( Section 5 ) ⇒ weighted fusion ( Section 5 ) 

Sequence- B ased T ransform A skeleton sequence ⇒ sequence-based transform (Section 3) ⇒ data visualization ( Section 4.1 ) 

⇒ multiple CNN ( Section 5 ) ⇒ weighted fusion ( Section 5 ) 

Visual E nhancement A skeleton sequence ⇒ data visualization ( Section 4.1 ) ⇒ visual enhancement ( Section 4.2 ) 

⇒ multiple CNN ( Section 5 ) ⇒ weighted fusion ( Section 5 ) 

Motion E nhancement A skeleton sequence ⇒ data visualization ( Section 4.1 ) ⇒ motion enhancement ( Section 4.3 ) 

⇒ multiple CNN ( Section 5 ) ⇒ weighted fusion ( Section 5 ) 

Table 6 

Evaluation of view invariant transform. 

Method Dataset 

Nothwestern-UCLA 

(Cross View)(%) 

NTU RGB + D (Cross 

V iew)(%) 

Data V isualization 85.43 80.36 

Skeleton- B ased 

T ransform 

87.61 82.25 

Sequence- B ased 

T ransform 

91.52 84.27 

Table 7 

Evaluation of visual enhancement 

Method Dataset 

Nothwestern-UCLA 

(Cross V iew)(%) 

NTU RGB + D (Cross 

V iew)(%) 

Data V isualization 85.43 80.36 

Visual E nhancement 88.70 ( r = 5 ) 84.54 ( r = 5 ) 

Table 8 

Evaluation of motion enhancement. 

Method Dataset 

Nothwestern-UCLA 

(Cross V iew)(%) 

NTU RGB + D (Cross 

V iew)(%) 

Data V isualization 85.43 80.36 

Motion E nhancement 89.35 ( ρ = 1 ) 84.07 ( ρ = 1 ) 
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1 The proposed dataset is provided in https://github.com/NewDataset/dataset.git . 
.6.4. Decision level fusion 

Table 9 evaluates average fusion and weighted fusion on four

atasets. As can be seen, the results of average fusion outperforms

hat of each single type. This result indicates that different types

f color images show complementary property to each other. It is

nteresting to find that the significance of each type varies from

ifferent datasets. For example, the 3 rd channel outperforms the

 nd channel on NTU RGB+D dataset (with cross view protocol),

hile the result is opposite on MSRC-12 dataset. This observation

otivates us to apply the weighted fusion method, which select

roper type of features for fusion. In practice, a five-fold validation

ethod is applied on training samples to learn values of ηc , using

hich best accuracy is achieved. In Table 9 , the selected types are

olored in green and the discarded types are colored in red. With

hese selected features, the weighted fusion outperforms the aver-

ge fusion on all datasets, verifying the effect of feature selection. 

We find that the 1 st and 6 th types are always selected for

ll datasets. This phenomenon shows that these types show dis-

inctive power to identify similar actions. Fig. 17 shows the 6 th

ype of color image representing 12 types of actions from MSRC-

2 dataset. Obviously, these images contain distinct patterns which

enefit the recognition of actions. As mentioned before, the color

mage in [21] is similar to the 10 th type, which is not always se-

ected for fusion. The color images in [20] are similar to the 1 st ,
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
 nd and 5 th types, where only the 1 st type is always selected for

usion. From the selected types, we claim that color images devel-

ped in our method can encode more sufficient and more distinct

patio-temporal information than [20] and [21] . 

.7. Evaluation of robustness to partial occlusions 

SmartHome dataset 1 is collected by our lab, which contains six

ypes of actions: “box”, “high wave”, “horizontal wave”, “curl”, “cir-

le”, “hand up”. Each action is performed 6 times (three times for

ach hand) by 9 subjects in 5 situations: “sit”, “stand”, “with a

illow”, “with a laptop”, “with a person”, resulting in 1620 depth

equences. Skeleton joints in SmartHome dataset contain much

oises, due to the effect of occlusions. The noisy skeleton snaps

f action “wave ” are illustrated in Fig. 18 . 

For evaluation, we use subjects #1 , 3 , 5 , 7 , 9 for training and

ubjects #2 , 4 , 6 , 8, 10 for testing. On this dataset, JTM [20] and

onvNets [21] achieve 71.11% and 67.22%, respectively. These re-

ults show that noise brought by occlusions increases the ambigui-

ies among similar skeleton sequences. Our Synthesized + Pre-trained

chieves an accuracy of 78.61% on this dataset. The improvements

ver [20] and [21] verify that our method is robust to partial oc-

lusions to some extend. 

.8. Evaluation of parameters 

Fig. 19 shows the effects of parameter r and ρ . The left figure

hows the accuracy of Visual Enhancement method with parameter

 ranging from 0 to 10 at an interval of 1. Parameter r stands for

he radius of the structuring element E . From the left figure, we

nd that the accuracy of Visual Enhancement firstly increases and

hen drops when the value of r grows larger. The reason is illus-

rated in Fig. 20 , which shows the effect of r on the first type of

olor images. Obviously, the visual patterns become more salient

hen r changes from 0 to 5. While, details of visual patterns be-

ome ambiguous when r changes from 5 to 10. In other words,

roper value of r should be selected to ensure the saliency of vi-

ual patterns. As Fig. 19 suggests, we set r to 5 as default value,

sing which we achieve highest accuracies on both datasets. The

ight figure shows that the accuracy of Motion Enhancement trends

o increase with parameter ρ growing from 0 to 1, therefore the

efault value of ρ is set to 1, which means directly using the mo-

ion energy of joint as weight. 

.9. Evaluation of computation time 

On the Northwestern-UCLA dataset, the computation time of

ur method is tested with default parameters of r = 5 and ρ = 1 .

he average computational time required for extracting an en-

anced color image is 0.0484 s on a 2.5 GHz machine with 8 GB

AM, using Matlab R2014a. The total training time is 26525.75 s
 for view invariant human action recognition, Pattern Recognition 
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Table 9 

Evaluation of average fusion and weighted fusion. The types of color images colored in green are selected to generate the weighted fusion results. 

Fig. 17. The 6 th type of color images generated by 12 actions of the MSRC-12 dataset [41] . 

Fig. 18. Skeletons of action “wave ” in SmartHome dataset. The estimated skeleton joints contain much noise, since the body is partial occluded by objects, e.g., desk and 

pillow. 

Please cite this article as: M. Liu et al., Enhanced skeleton visualization for view invariant human action recognition, Pattern Recognition 
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Fig. 19. Evaluation of parameter r and ρ . Left figure shows the accuracy of Visual Enhancement with r ranging from 0 to 10 at an interval of 1. Right figure shows the 

accuracy of Motion Enhancement with parameter ρ ranging from 0 to 1 at an interval of 0.1. 

Fig. 20. The effect of parameter r on the first type of color images. 
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sing one NVIDIA GeForce GTX 1080 card. The average testing

ime, including feature extraction and classification, is 0.65 s using

verage fusion method and is 0.39 s using weighted fusion method.

ote that average fusion may need more time than weighted fu-

ion, because in weighted fusion, some CNNs are not used and we

now which CNNs to select beforehand based on tuning on train-

ng data. 

. Conclusions and future works 

This paper aims at recognizing skeleton sequences under arbi-

rary viewpoints. First, a sequence-based transform method is de-

igned to map skeleton joints into a view invariant high dimen-

ional space. Second, points in the space are visualized as color

mages, which are compact and distinct to encode both spatial and

emporal cues of original skeleton joints. Further, visual and mo-

ion enhancement methods are developed to increase the discrim-

native power of color images. Finally, a multi-stream CNN-based

odel is applied to extract and fuse deep features from enhanced

olor images. Extensive experiments on benchmark datasets ver-

fy the robustness of our method against view variations, noisy

keletons, inter-similarities and intra-varieties among skeleton se-

uences. Our method obtains nearly 10% improvement on the NTU

GB+D dataset, the largest dataset for skeleton-based recognition.

his result verifies the efficiency of our method compared with the

tate-of-the-art LSTM-based methods. In future work, instead of

sing hard selection of the ten CNNs in the weighted probability

usion, i.e., ηc = 0 or 1, we can use soft probability fusion, i.e., η =
0, 1], to provide more flexibility. In addition, we can explore other

usion method, e.g., fusing CNNs in the Softmax loss layer in the

raining stage. Also, we can further enhance the color images by

nvolving temporal and spatial saliency. Data augmentation meth-

ds like adding gaussian noise to training samples can be obtained
Please cite this article as: M. Liu et al., Enhanced skeleton visualization

(2017), http://dx.doi.org/10.1016/j.patcog.2017.02.030 
o improve the performance. Recognizing actions from untrimmed

equences is also a new field for exploring. 
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