
Recognizing Human Actions as the Evolution of Pose Estimation Maps
Mengyuan Liu1, Junsong Yuan2

Nanyang Technological University1, University at Buffalo2

liumengyuan@ntu.edu.sg jsyuan@buffalo.edu

Experiments
 NTU RGB+D dataset: the largest one for 3d pose-based recognition task.

 56880 videos; 60 actions; 40 subjects; various views.

 Cross Subject (CS): 40320 videos for training; 16560 videos for testing.

 Cross View (CV): 37920 videos for training; 18960 videos for testing.

Data Method Type Year CS CV

3D Pose
(Kinect)

Super Normal Vector Hand-crafted 2014 31.82% 13.61%

Deep RNN RNN 2016 59.29% 64.09%

GCA-LSTM Improved RNN 2017 74.40% 82.80%

Clips + CNN + MTLN CNN 2017 79.57% 84.83%

S-PEM (RGB) S-PEM CNN - 72.75% 78.35%

S-P (RGB) S-P CNN - 72.96% 77.21%

S-P + S-PEM Two Stream CNN - 78.80% 84.21%

3D Pose (Kinect) Extended S-P CNN - 82.38% 85.75%

3D Pose + S-PEM Two Stream CNN - 91.71% 95.26%
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Conclusions
 Sole 2d poses from RGB sensor (S-P) performs poorly for recognition task.

 Pose estimation maps (S-PEM) improve performances of 2d poses (S-P).

 The fused form of PEMs and poses (S-P+S-PEM, using RGB) achieves

compatable performances with 3d pose-based methods (using Kinect).

 3D Pose + S-PEM (using both RGB and depth data) performs the best.

(a) Video                   (b) Inaccurate Pose         (c) Pose Estimation Map

Fig 1: Pose estimation map (PEM, accumulation of joint estimation maps) provides 

global body shape, which improves noisy 2d poses on recognition task.

Overview of the Proposed Method

Fig 2: Method overview. (a) Joint estimation maps. (b) For each frame, joint estimation maps are aggregated to

form a pose estimation map (PEM) and a pose. (c) The sequence of PEMs is described as an action signature

called S-PEM. (d) The sequence of poses is described as an action signature called S-P. (e) Late fusion.

 Use Rank Pooling to compress each frame as a vertical vector.

 Concatenate vectors as an image, according to their temporal order.
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Rank Pooling: compress M as a vector V.

Optimazation goal is to ensure monotone 

increasing of S.

M can be constructed in two ways:

1. Original pose estimation map (PEM).

2. Rotate PEM by 90 degree.

 Describe each pose as two vertical vectors, 

i.e., X = (x1, …, x14) and Y = (y1, …, y14).

The joint order is rearranged (see right figure).

 Concatenate vector X (or Y) as an image, 

according to their temporal order.

 Obtain an image with two channels.

Signature from Evolution of PEMs (S-PEM)

Signature from Evolution of Poses (S-P)

(a) Four Actions (b) S-PEM  (c) S-P

Motivation

 Human action recognition using 3d poses estimated from depth

sensor has achieved success with deep learning methods.

 Estimated 2d poses from RGB sensor are usually noisy due to

partial occlusions and self-similarities.

 Can we recognize human actions from these noisy 2d poses?

 The one channel image (S-PEM) is

repeated thee times.

 The two channel image (S-P) is

padded with a zero-value channel.

 Images are resized to [224 224].

 Pretrained VGG-19 model is used

(Last layer: from 1000 to the

number of total actions in dataset).

 Late fusion.

Two Stream Fusion

Fig 3: Generation of S-PEM

Fig 4: Generation of S-P

Fig 5: Comparision between S-PEM and S-P

Fig 6: Green arrow points out the estimated position of joint, which is inaccurate. Meanwhile,

pink arrow points to the region of PEM which covers the ground truth of the joint position.
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